DOI QR코드

DOI QR Code

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft

회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선

  • Received : 2019.08.06
  • Accepted : 2019.12.28
  • Published : 2020.02.28

Abstract

This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

본 논문은 회전익 항공기의 동체에 특정 장비를 장착하기 위한 지지 구조물에서 균열이 발생하여 이를 개선하기 위한 목적으로 수행한 연구이다. 회전익 항공기 동체의 스킨(Skin) 구조물에 추가된 지지 구조물인 더블러(Doubler)는 개발 단계에서의 하중을 기반으로 설계 및 제작 되었으며, 항공기 운용 중 특정 시점에 더블러의 표면에서 균열이 발견되었다. 균열의 원인을 찾기 위해서 장비 장착 시 체결 조건으로 발생할 수 있는 원 구조물의 초기 변형을 고려하고, 항공기 날개 통과 주파수와 해당 구조물의 고유 주파수를 동특성 해석 조건으로 고려 하였다. 이러한 시나리오의 검토 결과로 초기 변형을 유발하는 패스너 체결 부위의 물리적인 틈(Gap) 제거를 위한 심(Shim)구조물을 추가하고, 두께가 보강된 더블러를 장착하였다. 개선된 설계의 구조적 검증을 위한 동특성 해석 결과를 검토하여 구조 강도의 증가를 확인하고, 더블러에 대한 피로 평가 수행을 통해 항공기 요구 수명 조건 또한 충족함을 확인하였다.

Keywords

References

  1. J. H. Shin, S. H. Jeong, G. H. Kang, H. S. Lee "A Study on the Improvement of Crack Propagation in Wing Root Fairing Support by Pre-load in Military Aircraft Production Process", Journal of Aerospace System Engineering, Vol.12, No.3, pp.38-44, June, 2018 https://doi.org/10.20910/JASE.2018.12.3.38
  2. H. K. Cho, J. S. Park, "Analysis of the Extension Effect of Fatigue Life by Pre-Indentation in Aluminum Alloy Plates", Journal of Aerospace System Engineering, Vol. 1, No. 1, pp. 48-52, Mar, 2007.
  3. Y. G. Kang, C. M. Suh, W. J. Park, "Fatigue Crack Shape Variations by a Residual Stress and Fatigue Life Prediction", Journal of Ocean Engineering and Technology, Vol. 7, No. 2, pp. 68-78, Dec 1993.
  4. J. Woodtili, W. Muster, and J. C. Radon, "Residual Stress Effect in Fatigue Crack Growth", Engineering Fracture Mechanics, Vol. 24, No. 3, pp. 399-412, 1986. https://doi.org/10.1016/0013-7944(86)90070-6
  5. US Department of Defense, "Department of Defense Test Method Standard: Environmental Engineering Considerations and Laboratory Tests", Jan. 2008
  6. MacNeal-Schwendler Corporation (MSC), "MSC/NASTRAN Handbook for Dynamic Analysis", 1983
  7. Dave S. Steinberg, "Vibration analysis for electronic Equipment", John Wiley & Sons Inc. 3rd Edition, pp. 202-205, 2000
  8. Richard C. Rice, Jana L. Jackson, John Bakuckas and Steven Thomson, "Metallic Materials Properties Development and Standardization", Battelle Memorial Laboratories MMPDS, vol. 01 pp. 370-451, Jan. 2003