• Title/Summary/Keyword: Biosorption model

Search Result 58, Processing Time 0.025 seconds

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

Biosorption Model of Mercury by Saccharomyces Cerevisiae and Aureobasidium Pullulans (Saccharomyces cerevisiae와 Aureobasidium pullulans의 수은제거 모델)

  • 서정호;서명교;강신묵;이국의;최윤찬;조정구;김의용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.21-25
    • /
    • 1997
  • A study on the removal of mercury by Saccharomyces cerevisiae and Aureobasidium pullulans was done, in which the model of adsorption isotherm and adsorption rate was proposed. The adsorption isotherm of mercury by S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. The amount of mercury removed by A. pullulans was higher than that of S. cerevisiae, but the adsorption rate of mercury by A. pullulans was slower than that of S. cerevisiae. In a rapid adsorption process, therefore, it is more useful to use S. cerevisiae as a biosobent.

  • PDF

Biosorption of Pb and Cu by Marine Algae (해조류를 이용한 Pb 및 Cu의 흡착)

  • 서근학;안갑환;조문철;김병진;진형주;홍용기
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.444-448
    • /
    • 1998
  • Biosorption of Pb and Cu was evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Hypnea charoides showed the highest capacity for Pb. An adsorption equilibrium was reached in about 2 hr for Pb and 30 min for Cu. The uptake capacity was 192.8 mg Pb/g biomass and 256 mg Cu/g biomass, respectively. The adsorption parameters for Pb and Cu were determined according to Langmuir model. With an increase in pH value, more negative sites are becoming avaliable for adsorption of pH and Cu, thus the removal of Pb and Cu increases at alkaline conditions. The selectivity of mixture solution shows the uptake order of Pb>Cu>Cr>Cd. When Ca concentration increases in Pb solution, Pb was selectively adsorbed.

  • PDF

Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse

  • Vera, Luisa Mayra;Bermejo, Daniel;Uguna, Maria Fernanda;Garcia, Nancy;Flores, Marittza;Gonzalez, Enrique
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • In this paper the results of the biosorption of lead(II) and cadmium(II) with sugarcane bagasse in fixed bed columns are presented. Experimental data were fitted to several models describing the rupture curve for single-component and two-component systems. The percentages of removal of lead and cadmium in single-component systems are 91% and 90%, respectively. In lead-cadmium bicomponent systems the percentage of elimination of lead was 90% and cadmium 92%. In single-component systems, Yoon-Nelson and Thomas models successfully reproduce the rupture curves. In two-component system, the Dose-Response model was the best one reproducing the experimental rupture curves in the entire measured range.

Kinetic Modeling for Biosorption of Metylene Blue onto H3PO4 Activated Acacia arabica

  • Sivarajasekar, N.;Srileka, S.;Samson Arun Prasath, S.;Robinson, S.;Saravanan, K.
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • Batch sorption experiments were carried out for the removal of metylene blue from its aqueous solution using $H_3PO_4$ activated Acacia arabica carbon (AAC). The prepared activated carbon was characterized and was found as an effective adsorbent material. The operating variables studied were initial metylene blue concentration, AAC concentration and solution pH. AAC activated carbon posses a maximum sorption capacity for the range of initial dye concentrations studied (60~100 mg $L^{-1}$). The sorption kinetics were analyzed using reversible first order kinetics, second order, reversible first order, pseudo-first order, and pseudo-second order model. The sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The average pseudo-second order rate constant, $K_{II}$ and regression coefficient value were determined to be 0.0174 mg $g^{-1}$ $min^{-1}$ and 0.9977. The biosorption process also fit well to reversible I order kinetics with a regression coefficient of 0.9878.

Comparison of Biosorption of N, P ions by Zygnema sterile and Lepocinclism textra Biomass under Irradiation Period in High Rate Algae Biomass Reactor (고율 조류 바이오매스 반응기에서 조사시간으로 본 Zygnema sterile과 Lepocinclism textra 바이오매스의 질소, 인 이온 생흡착의 비교)

  • Kong, Surk-Key
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.11-21
    • /
    • 2007
  • The recent investigation indicates that the kinetic constants for anionic ions were merely the result of ion exchange between the algae cell wall surface and the anionic ion. In this study, Zygnema sterile and Lepocinclism textra, floating flagellate alga as the dominant algae strains, were cultivated using HRABR(High Rate Algae Biomass Reactor) and the cultivation conditions were 24 hrs. and 12 hrs. irradiation and it was studied how this algal biomass acts on the biosorption mechanism of anionic N and P. Results are as follows : 1. Calculating the specific chl.-a growth rate using Michaelis-Menten model, the one of 24hrs. irradiation was about 55 times higher than the one of 12 hrs. irradiation 2. Calculating the specific chl.-a growth rate using Kuo model, the one of 24 hrs. irradiation was about 2.26 times higher than the one of 12 hrs. irradiation 3. Langmuir model can apply to the biosorption mechanism of anionic N and P in HRABP. 4. Regarding the chlorophyll-a concentration as unit weight of sorbent, the ion selectivity coefficients for N and P are as follows : $(NH_3-N)+(NO_3-N)$ in 24 hrs. irradiation ; 44.984 $PO_4-P$ in 24 hrs. irradiation ; 24.237 $(NH_3-N)+(NO_3-N)$ in 12 hrs. irradiation ; 1432.851 $PO_4-P$ in 12 hrs. irradiation ; 599.076

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

Biosorption of Heavy Metals by Saccharomyces uvarum (Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구)

  • Ahn, Kab-Hwan;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.141-141
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

Biosorption of Heavy Metals by Saccharomyces uvarum (Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구)

  • 안갑환;서근학
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.527-534
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

  • PDF

Synthesis and characterization of sugarcane bagasse/zinc aluminium and apple peel/zinc aluminium biocomposites: Application for removal of reactive and acid dyes

  • Safa, Yusra;Tariq, Saadia Rashid;Bhatti, Haq Nawaz;Sultan, Misbah;Bibi, Ismat;Nouren, Shazia
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • In this research work, synthesis of sugarcane bagasse/zinc aluminium biocomposite and apple peel/zinc aluminium biocomposite and their application for removal of Reactive Red-241 and Acid Orange-7, respectively, was studied using various parameters. At pH 2 the sorption was the highest for both dyes. The trend showed that the dye sorption declined by decreasing the biocomposite dose and enhanced by increasing the dye concentration and temperature. Equilibrium was achieved at 60 minutes for Reactive Red-241 onto sugarcane bagasse/zinc aluminium biocomposite and 90 minutes for Acid Orange-7 onto apple peel/zinc aluminium biocomposite.The research data was good fitted to pseudo-2nd-order kinetic model and Langmuir isotherm. FT-IR analysis was used to confirm the biosorption of the selected dyes at the surface of biosorbent through various binding sites. Surface morphology modification of both biocomposites before and after biosorption was inspected through SEM. Crystallinity of biocomposite was examined through XRD analysis. It was implied that sugarcane bagasse/ zinc aluminium biocomposite and apple peel/ zinc aluminium biocomposite are good adsorbents for dyes elimination from aqueous solutions.