DOI QR코드

DOI QR Code

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin (Faculty of Biological Science, Alzahra University) ;
  • Dabbagh, Reza (Materials & Nuclear Fuel Research School, Nuclear Sciences & Technology Research Institute, (NSTRI)) ;
  • Noroozi, Mostafa (Faculty of Biological Science, Alzahra University) ;
  • Baradaran, Sama (Nuclear Sciences & Technology Research Institute, (NSTRI))
  • Received : 2019.10.05
  • Accepted : 2020.04.07
  • Published : 2020.03.25

Abstract

The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

Keywords

Acknowledgement

Supported by : Nuclear Sciences & Technology Research Institute of Tehran, INFPPC

The research described in this paper was financially supported by the Biological Science department of Alzahra University and the Nuclear Sciences & Technology Research Institute of Tehran and INFPPC.

References

  1. Ahmad, N., Ahmad, W.A. and Zakaria, Z. (2012), "Biosorption of chromium (VI) by chitosan-immobilized Acinetobacter haemolyticus", Proceedings of the 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), Kuala Lumpur. Malaysia, June.
  2. Boparai, H.K., Joseph, M. and O'Carroll, D.M. (2011), "Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles", J. Hazard. Mater., 186(1), 458-465. https://doi.org/10.1016/j.jhazmat.2010.11.029.
  3. Castro, L., Blazquez, M.L., Gonzalez, F., Munoz, J.A. and Ballester, A. (2017), "Biosorption of Zn (II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach", Sci. Total Environ., 598, 856-866. https://doi.org/10.1016/j.scitotenv.2017.04.138.
  4. Cobas, M., Sanroman, M. and Pazos, M. (2014), "Box-Behnken methodology for Cr (VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus", Bioresour. Technol., 160, 166-174. https://doi.org/10.1016/j.biortech.2013.12.125.
  5. Dabbagh, R., Rojaee, A. and Heshmatipour, Z. (2018), "Thermodynamics, kinetics, and equilibrium studies of uranium sorption by gracilaria corticata red alga", Environ. Eng. Manage. J., 17(5).
  6. Ding, Y. and Sartaj, M. (2015), "Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology", J. Environ. Chem. Eng., 3(2), 807-814. https://doi.org/10.1016/j.jece.2015.03.025.
  7. Fomina, M. and Gadd, G.M. (2014), "Biosorption: Current perspectives on concept, definition and application", Bioresour. Technol., 160, 3-14. https://doi.org/10.1016/j.biortech.2013.12.102.
  8. Ghorbani, F., Younesi, H., Ghasempouri, S.M., Zinatizadeh, A.A., Amini, M. and Daneshi, A. (2008), "Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae", Chem. Eng. J., 145(2), 267-275. https://doi.org/10.1016/j.cej.2008.04.028.
  9. Gok, C. and Aytas, S. (2009), "Biosorption of uranium (VI) from aqueous solution using calcium alginate beads", J. Hazard. Mater., 168(1), 369-375. https://doi.org/10.1016/j.jhazmat.2009.02.063.
  10. Gok, C., Aytas, S. and Sezer, H. (2017), "Modeling uranium biosorption by Cystoseira sp. and application studies", Separ. Sci. Technol., 52(5), 792-803. https://doi.org/10.1080/01496395.2016.1267212.
  11. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. and Shi, J. (2006), "Biosorption of copper and lead ions by waste beer yeast", J. Hazard. Mater., 137(3), 1569-1576. https://doi.org/10.1016/j.jhazmat.2006.04.045.
  12. He, J. and Chen, J.P. (2014), "A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools", Bioresour. Technol., 160, 67-78. https://doi.org/10.1016/j.biortech.2014.01.068.
  13. Huang, L.Z., Zeng, G.M., Huang, D.L., Li, L.F., Du, C.Y. and Zhang, L. (2010), "Biosorption of cadmium (II) from aqueous solution onto Hydrilla verticillata", Environ. Earth Sci., 60(8), 1683-1691. https://doi.org/10.1007/s12665-009-0302-3.
  14. Hui, L., Xiao, D.L., Hua, H., Rui, L. and Zuo, P.L. (2013), "Adsorption behavior and adsorption mechanism of Cu (II) ions on amino-functionalized magnetic nanoparticles", Trans. Nonferr. Metals Soc. China, 23(9), 2657-2665. https://doi.org/10.1016/S1003-6326(13)62782-X.
  15. Kim, K.W., Hyun, J.T., Lee, K.Y., Lee, E.H., Lee, K.W., Song, K.C. and Moon, J.K. (2011), "Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation", J. Hazard. Mater., 193, 52-58. https://doi.org/10.1016/j.jhazmat.2011.07.032.
  16. Kiran, B., Kaushik, A. and Kaushik, C. (2007), "Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium", Chem. Eng. J., 126(2-3), 147-153. https://doi.org/10.1016/j.cej.2006.09.002.
  17. Klimmek, S., Stan, H.J., Wilke, A., Bunke, G. and Buchholz, R. (2001), "Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae", Environ. Sci. Technol., 35(21), 4283-4288. https://doi.org/10.1021/es010063x
  18. Kousha, M., Daneshvar, E., Sohrabi, M., Koutahzadeh, N. and Khataee, A. (2012), "Optimization of CI Acid black 1 biosorption by Cystoseira indica and Gracilaria persica biomasses from aqueous solutions", Int. Biodeterior. Biodegrad., 67, 56-63. https://doi.org/10.1016/j.ibiod.2011.10.007.
  19. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Amer. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.
  20. Liu, Y.G., Ting, L., He, Z.B., Li, T.T., Hui, W., Hu, X.J., Guo, Y.M. and Yuan, H. (2013), "Biosorption of copper (II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads", Trans. Nonferr. Metals Soc. China, 23(6), 1804-1814. https://doi.org/10.1016/S1003-6326(13)62664-3.
  21. Marques Neto, J.D.O., Bellato, C.R., Milagres, J.L., Pessoa, K.D. and Alvarenga, E.S.D. (2013), "Preparation and evaluation of chitosan beads immobilized with Iron (III) for the removal of As (III) and As (V) from water", J. Braz. Chem. Soc., 24(1), 121-132. https://doi.org/10.1590/S0103-50532013000100017.
  22. Mehdinezhad, N., Ghannadi, A. and Yegdaneh, A. (2016), "Phytochemical and biological evaluation of some Sargassum species from Persian Gul", Research Pharmaceut. Sci., 11(3), 243.
  23. Mirzabe, G.H. and Keshtkar, A.R. (2015), "Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent", J. Industr. Eng. Chem., 26, 277-285. https://doi.org/10.1016/j.jiec.2014.11.040.
  24. Naeem, H., Bhatti, H.N., Sadaf, S. and Iqbal, M. (2017), "Uranium remediation using modified Vigna radiata waste biomass", Appl. Radiation Isotopes, 123, 94-101. https://doi.org/10.1016/j.apradiso.2017.02.027.
  25. Ngah, W.W. and Fatinathan, S. (2010), "Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies", J. Environ. Manage., 91(4), 958-969. https://doi.org/10.1016/j.jenvman.2009.12.003.
  26. Pahlavanzadeh, H., Keshtkar, A., Safdari, J. and Abadi, Z. (2010), "Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies", J. Hazard. Mater., 175(1-3), 304-310. https://doi.org/10.1016/j.jhazmat.2009.10.004.
  27. Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. and Munoz, J. (2007), "Comparative study of biosorption of heavy metals using different types of algae", Bioresour. Technol., 98(17), 3344-3353. https://doi.org/10.1016/j.biortech.2006.09.026.
  28. Sag, Y. and Kutsal, T. (1996), "The selective biosorption of chromium (VI) and copper (II) ions from binary metal mixtures by R. arrhizus", Process Biochem., 31(6), 561-572. https://doi.org/10.1016/S0032-9592(95)00100-X.
  29. Sohbatzadeh, H., Keshtkar, A.R., Safdari, J. and Fatemi, F. (2016), "U (VI) biosorption by bi-functionalized Pseudomonas putida@ chitosan bead: Modeling and optimization using RSM", Int. J. Biol. Macromolecul., 89, 647-658. https://doi.org/10.1016/j.ijbiomac.2016.05.017.
  30. Thiele, D. (1995), Metal Detoxification in Eukaryotic Cells, Crisp Data Base of National Institute of Health, Washington, U.S.A.
  31. Varjani, S.J., Agarwal, A.K., Gnansounou, E. and Gurunathan, B. (2018), Bioremediation: Applications for Environmental Protection and Management, Springer Nature Singapore Pte Ltd, Singapore.
  32. Vasudevan, P., Padmavathy, V. and Dhingra, S. (2002), "Biosorption of monovalent and divalent ions on baker's yeast", Bioresour. Technol., 82(3), 285-289. https://doi.org/10.1016/S0960-8524(01)00181-X.
  33. Vijayaraghavan, K., Padmesh, T., Palanivelu, K. and Velan, M. (2006), "Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models", J. Hazard. Mater., 133(1-3), 304-308. https://doi.org/10.1016/j.jhazmat.2005.10.016.
  34. Volesky, B. (1990), Removal and Recovery Of Heavy Metals By Biosorption; Biosorption of Heavy Metals, CRC Press, Boston, U.S.A.
  35. Waseem, A., Ullah, H., Rauf, M.K. and Ahmad, I. (2015), "Distribution of natural uranium in surface and groundwater resources: A review", Crit. Rev. Environ. Sci. Technol., 45(22), 2391-2423. https://doi.org/10.1080/10643389.2015.1025642.
  36. Yang, J. and Volesky, B. (1999), "Biosorption of uranium on Sargassum biomass", Water Res., 33(15), 3357-3363. https://doi.org/10.1016/S0043-1354(99)00043-3.
  37. Yi, Z.J., Yao, J., Chen, H.L., Wang, F., Yuan, Z.M. and Liu, X. (2016), "Uranium biosorption from aqueous solution onto Eichhornia crassipes", J. Environ. Radioact., 154, 43-51. https://doi.org/10.1016/j.jenvrad.2016.01.012.
  38. Yu, Q., Matheickal, J.T., Yin, P. and Kaewsarn, P. (1999), "Heavy metal uptake capacities of common marine macro algal biomass", Water Res., 33(6), 1534-1537. https://doi.org/10.1016/S0043-1354(98)00363-7.
  39. Zou, W., Han, R., Chen, Z., Shi, J. and Liu, H. (2006), "Characterization and properties of manganese oxide coated zeolite as adsorbent for removal of copper (II) and lead (II) ions from solution", J. Chem. Eng. Data, 51(2), 534-541. https://doi.org/10.1021/je0504008.