• Title/Summary/Keyword: Biomedical Monitoring

Search Result 456, Processing Time 0.031 seconds

Development and Evaluation of a SYBR Green-Based, Real-time Polymerase Chain Reaction for Rapid and Specific Detection of Human Coxsackievirus B5

  • Cho, Kyu Bong
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.302-309
    • /
    • 2020
  • Human Coxsackievirus B5 (HuCoxV-B5) infection has been associated with various diseases such as myocarditis, aseptic meningitis, hand-foot-and mouth-disease, and insulin-dependent diabetes. HuCoxV-B5 is a virus transmitted through the fecal-oral route and is detected in clinics, aquatic environments, food, shellfish, etc. and is one of the more important viruses in public health because of its incidence rate reported worldwide. In this study, a combination of SYBR Green-based real-time PCR primers for molecular diagnosis including monitoring of HuCoxV-B5 was selected and the optimal reaction conditions were established. Compared with the previously reported TaqMan probe-based real-time PCR method, assessments including a sample applicability test were performed. Results showed that the real-time PCR method developed in this study was suitable for a molecular diagnostic technique for detecting HuCoxV-B5. This study is expected to contribute to efforts in responding to safety accidents in public health because the proposed method facilitates rapid diagnosis of clinical patients. It can also be used as a specific monitoring tool of HuCoxV-B5 in non-clinical areas such as aquatic environments among others.

Reliability Management of Mechanical Ventilator in Intensive Care Unit Using FMEA Based on ISO14971 (ISO14971 기반 FMEA를 이용한 중환자실내 인공호흡기 신뢰성 관리)

  • Hyun Joon, Kim;Won Kyu, Kim;Tae Jong, Kim;Gee Young, Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Due to the spread of COVID-19, many patients with severe respiratory diseases have occurred worldwide, and accordingly, the use of mechanical ventilators has exploded. However, hospitals do not have systematic risk management, and the Medical Device Regulation also provides medical device risk management standards for manufacturers, but does not apply to devices in use. In this paper, we applied the Failure Mode Effects Analysis (FMEA) risk analysis technique based on the International Standard ISO 14971 (Medical Devices-Application of risk management to medical devices) for 85 mechanical ventilators of a specific model in use in hospitals. Failure modes and effects of each parts were investigated, and risk priority was derived through multiplication of each score by preparing criteria for severity, occurrence, and detection for each failure mode. As a result, it was confirmed that the microprocessor-based Patient Unit/Monitoring board in charge of monitoring scored the highest score with 36 points, and that reliability management is possible through systematic risk management according to priority.

Development of a Multi-Modal Physiological Signals Measurement-based Wearable Device for Heart Sounds Analysis (멀티 모달 생체 신호 측정이 가능한 심음 분석 웨어러블 장치 개발에 관한 연구)

  • Lee, Soo Min;Lee, Mi Ran;Wei, Qun;Park, Hee Joon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1251-1256
    • /
    • 2022
  • Auscultation of heart sounds using a stethoscope is the basic method to diagnose the cardiovascular disease and observation of abnormalities. However, the heart sound transmitted to the ear through the stethoscope is greatly affected by internal sounds such as organ movement or breathing. In addition, the user's experience significantly influences the accuracy of the auscultation result. Therefore, in this paper, we developed a wearable device that simultaneously measures heart sound and PPG signals for cardiac condition monitoring. The structure of the proposed device is designed to simultaneously measure heart sound and PPG signals when worn on a finger and placed on the chest. A prototype was implemented according to the design structure, and it was confirmed that the performance of measurements and collection for physiological signals was excellent through experiments.

Implementation of Medical Device Integration Module for Integrated Patient Monitoring System

  • Park, Myeong-Chul;Jung, Hyon-Chel;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.79-86
    • /
    • 2017
  • In this paper, we implement a common module that can integrate multiple biometric information for integrated patient monitoring system. Conventional biomedical instruments have many devices attached to each patient, making it difficult to monitor abnormality signs of many patients in real time. In this paper, we propose a module for an integrated monitoring system that can perform centralized monitoring using a common module that integrates multiple measurement devices. A protocol for sending and receiving packets between the measuring device and the common module is designed, and the packets transmitted through the network are stored and managed through the integrated monitoring system and provide information to various users such as medical staff. The results of this study are expected to contribute to the management of patients and efficient medical services in hospitals.

A Study on Measurement of Heartrate and Respiration during Sleep using Doppler Radar: Preliminary Study (도플러 레이더를 이용한 수면 중의 심박 및 호흡 측정: 예비연구)

  • Lim, Yong Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.264-270
    • /
    • 2017
  • A Doppler radar sensor was applied to detect respirations and heartbeats of persons who were lying on a bed. This study is preliminary study aiming at non-contact and non-intrusive respiration and heart rate monitoring during sleep in daily life. For the experiments, 10GHz Doppler radar with patch-type antenna was used and installed on the upper right and the distance between the body and the antenna was 1 m. The results show that each signal of respiration and heartbeat is observed in each frequency band however the frequency band and the waveform vary according to the subjects and the posture. The results show that the heartbeats can be detected with the peak detection in some frequency band. This study shows the feasibility of applying the Doppler radar to detection of heartbeat and respiration during sleep and further studies about heartbeat detection algorithm are required.

Flexible tactile sensor for minimally invasive surgery (최소 침습 수술을 위한 유연한 촉각 센서)

  • Lee, Junwoo;Yoo, Yong Kyoung;Han, Sung Il;Kim, Cheon Jing;Lee, Jeong Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1229-1230
    • /
    • 2015
  • Monitoring of mechanical properties of tissues as well as direction/quantities of forces is considered as an essential way for disease diagnosis and haptic feedback systems. There are extensively increasing interests for measuring normal/shear force and touch feelings, especially for surgery systems. Highly sensitive and flexible tactile sensor is needed in palpation for detecting cancer cyst as well as real time pressure monitoring in minimally invasive surgery (MIS). Importantly, MEMS technique with miniaturized fabrication technique is essential for the on-chip integration with biopsy and biomedical grasper. Here, we propose the flexible tactile sensor with high sensitivity based on piezoresistive effect. We analyzed the sensitivity according to the pressure and directions and showed the ability of discrimination of the different materials surfaces, illustrating the feasibility of the flexible tactile sensor for biomedical grasper by mimicking human skin.

  • PDF

A Design of Animal Disease Prevention Monitoring System using Zigbee (Zigbee을 이용한 동물 질병 예방 감시 시스템의 설계)

  • Jung, Hyon-Chel;Park, Myeong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.417-418
    • /
    • 2014
  • 본 논문에서는 무선 바이오센서 기반에서 동물 생체측정 정보를 이용한 질병 예방 감시 시스템을 설계하였다. 제안 시스템은 바이오센서를 이용하여 동물의 심박, 호흡수, 운동량을 측정할 수 있는 모듈을 개발하고 생체 신호를 계측하여 신호 처리된 정보를 Zigbee 무선 통신모듈을 이용하여 원격 데이터베이스에 전송하도록 설계하였다. 모니터링 시스템에서는 수집된 생체 정보의 연속적인 변화를 통하여 가축의 이상여부를 판단하고 질병 발생여부를 조기에 발견할 수 있게 가축의 상태정보를 제공한다. 본 연구결과는 향후 축산 농가의 질병 감시를 통하여 질병의 확산을 차단할 수 있는 긴급대처시스템을 구축하는데 활용 될 것이다.

  • PDF

Design and Implementation of CMS Based on MDEC for Biological Instrumentation (생체 계측을 위한 MDEC 기반의 CMS 설계 및 구현)

  • Jung, Hyon-Chel;Kim, Tea-Koon;Jun, Jea-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.101-102
    • /
    • 2015
  • 본 논문에서는 다수의 생체계측 정보를 MDEC(Medical Device Exchange Communication) 기반의 공통모듈을 이용하여 중앙 집중 관리를 위한 CMS(Central Monitoring System)를 제안한다. 기존의 바이탈사인 모니터 등은 환자별로 부착되어 다수의 환자에 대한 이상 징후를 실시간으로 모니터링하기에는 어려움이 있다. 이에 본 논문에서는 다수의 계측 장비를 통합하는 공통모듈인 MDEC을 이용하여 집중 모니터링이 가능한 CMS을 구현하였다. 계측장비와 MDEC의 패킷 송수신을 위한 프로토콜을 설계하고 네트워크로 전송된 패킷은 CMS에 표시되며 데이터베이스에 저장된다. 본 연구의 결과는 급속히 증가하는 병원내 환자 관리 및 효율적 의료서비스에 기여할 것으로 사료된다.

  • PDF

Wireless Bio-signal Monitoring System (무선 생체신호 모니터링 시스템)

  • Kim, Do-Kyoung;Lee, In-Kwang;Cha, Eun-Jong;Kim, Kyung-Ah
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2055-2056
    • /
    • 2011
  • As rapid aging and high economic level, people are interested in their wellness. And it needs to examine the condition of their health constantly. Proposed device can measure bio-signal by connecting several measurement modules such as spirometric module, blood glucose measurement module, uro-flow measurement module and temperature measurement module. These modules can be chosen as occasion demands. In addition, developed user program enables patients to monitor bio-signal at their own place via the personal computer.

  • PDF

Assessment of efficacy of respiration monitoring system customized for patients under critical care (위급 중환자에 특화된 호흡 모니터링 시스템의 유효성 평가)

  • Lee, In-kwang;Park, Mi-Jung;Kim, Kyoung-Oak;Cha, Eun-Jong;Kim, Kyung-Ah
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1431-1432
    • /
    • 2015
  • A system was developed to continuously monitor the respiratory signal under critical care, followed by performance evaluation for clinical application. Very much accurate pressure measurement was made in the endo-tracheal tube with mean relative error of 0.13%. In the comparative experiment simulating inspiration and expiration, the tidal volume measurement was also accurate within mean relative error of 3%, validating reliable measurement of respiratory signals.

  • PDF