• Title/Summary/Keyword: Bioactive lipids

Search Result 36, Processing Time 0.027 seconds

Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease

  • Song, Jae-Hwi;Kim, Goon-Tae;Park, Kyung-Ho;Park, Woo-Jae;Park, Tae-Sik
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.373-383
    • /
    • 2021
  • Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.

The theranostic roles of extracellular vesicles in pregnancy disorders

  • Saadeldin, Islam M.;Tanga, Bereket Molla;Bang, Seonggyu;Fang, Xun;Yoon, Ki-Young;Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.2-12
    • /
    • 2022
  • Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-the-art of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Resistance of Bovine Colostrum Exosomes to Bacterial Infection by Regulating Iimmunity in Caenorhabditis elegans Model

  • Minkyoung Kang;Minji Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.35-47
    • /
    • 2024
  • Milk exosomes contain several bioactive molecules, including lipids, proteins, and miRNAs, which enhance immune response. This study aimed to assess the resistance effects of bovine colostrum exosomes (BCEs) on pathogenic microbial infections in a Caenorhabditis elegans model. BCEs have been shown to enhance the protective response of C. elegans to pathogenic bacterial infections. Our study revealed that BCE extended the lifespan of worms compared to control OP50 worms. In addition, nematode colostrum exosomes promoted nematode resistance to four pathogenic bacteria and prolonged their lifespan in a killing assay. In contrast, mature milk-derived exosomes (BME) did not affect the resistance and lifespan of nematodes exposed to pathogenic bacteria. BCE exposure extended the lifespan of C. elegans against pathogenic infections by stimulating the innate immune response and increasing antimicrobial protein expression. Using biological process-related gene ontology (GO) enrichment analysis, the significantly upregulated GO terms related to C. elegans immunity in BCE-exposed C. elegans included defense, innate immunity, and immune responses. This study demonstrated that BCE enhanced the host defense of C. elegans to prolong its lifespan, thereby suggesting a new natural product against infection by pathogenic bacteria.

Cherry Silverberry (Elaeagnus multiflora) Wine Mitigates the Development of Alcoholic Fatty Liver in Rats (보리수열매주의 알코올성 지방간 형성 억제 효과)

  • Kim, Ju-Yeon;Nam, Kyung-Sook;Noh, Sang-K.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Cherry silverberry (Elaeagnus multiflora) contains bioactive phenolics. This study was conducted to determine whether feeding cherry silverberry wine (CSW) to rats would alleviate the progress of alcoholic fatty liver. Adult male Sprague-Dawley rats were divided by weight into the following three groups. Two groups of rats were fed 6.7% ethanol or the caloric equivalent Lieber-DeCarli diet containing maltose-dextrin, and the other group an isocaloric Lieber-DeCarli diet containing CSW at the same ethanol level for 6 weeks. CSW's flavonoids, its antioxidant and free radical scavenging activities, serum transaminases, serum and hepatic lipids, and liver histology were examined. Our results showed that CSW exerted significant antioxidant and radical scavenging activities. The serum activities of alanine and aspartate transminases were markedly decreased by CSW at 6 weeks. Also, CSW feeding resulted in significant reductions in blood cholesterol and triglyceride. The development of alcoholic fatty liver was significantly delayed by lowering fat accumulation. Taken together, these results indicate that CSW may help protect the liver against alcoholic fatty liver by improving serum and hepatic lipid status. This may be associated with the protective effect of CSW on alcoholic fatty liver via bioactive phenolic compounds.

Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review (커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향)

  • Jihyeon Hwang;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage processing and consumption, byproducts such as coffee silverskin (CS), spent coffee grounds (SCGs), and oil are generated. Despite containing beneficial materials such as cellulose, hemicellulose, lignin, lipids, and bioactive substances, these byproducts are typically discarded in landfills or incinerated. The utilization of CS, SCGs, and oil in the development of packaging materials holds significant potentials toward the realization of a sustainable society. To this end, considerable research efforts have been dedicated to the development of high-value materials derived from coffee byproducts, including functional fillers, polymer composites, and biodegradable polymers. Notably, CS and SCGs have been employed as functional fillers in polymer composites. Additionally, lipids extracted from SCGs have been used as plasticizers for polymers and cultured with microorganisms to produce biodegradable polymers. This review focuses on the research and development of polymer/CS and polymer/SCG composites as well as cellulose extraction and utilization from CS and SCGs and its applications, oil extraction from SCGs, and cultivation with microorganisms using extracted oil for polyhydroxyalkanoates(PHA) production.

Blending of Soybean Oil with Selected Vegetable Oils: Impact on Oxidative Stability and Radical Scavenging Activity

  • Li, Yang;Ma, Wen-Jun;Qi, Bao-Kun;Rokayya, Sami;Li, Dan;Wang, Jing;Feng, Hong-Xia;Sui, Xiao-Nan;Jiang, Lian-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2583-2589
    • /
    • 2014
  • Background: Soybean oil may protect against cancer of the breast and prostate. It may also exert beneficial influence in combination with other oils. Here, blends (20%, v/v) of sea buckthorn oil (SEBO), camellia oil (CAO), rice bran oil (RBO), sesame oil (SEO) and peanut oil (PEO) with soybean oil (SBO) were formulated. Materials and Methods: Oxidative stability (OS) and radical scavenging activity (RSA) of SBO and blends stored under oxidative conditions ($60^{\circ}C$) for 24 days were studied. By blending with different kinds oils, levels of polyunsaturated fatty acids (PUFA) decreased, while monounsaturated fatty acid (MUFA) content increased. Progression of oxidation was followed by measuring peroxide value (PV), p-anisidine (PAV), conjugated dienes (CD) and conjugated trienes (CT). Results: Inverse relationships were noted between PV and OS at termination of storage. Levels of CD and CT in SBO, and blends, increased with increase in time. The impact of SEO as additives on SBO oxidation was the strongest followed by RBO, CAO, SEBO and PNO. Conclusions: Oxidative stability of oil blends was better than SBO, most likely as a consequence of changes in fatty acids and tocopherols' profile, and minor bioactive lipids found in selected oils. The results suggest that these oil blends could contribute as sources of important antioxidant related to the prevention of chronic diseases associated to oxidative stress, such as in cancer and coronary artery disease.

Hypolipidemic Effects of Korean Softwood Components (국내 침엽수재 추출성분의 혈액지질 저하 효과 연구)

  • 김영균;김우경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1204-1209
    • /
    • 2001
  • As a basic study to find bioactive principles for the hypolipidemic effect from natural sources, various biological influences of MeOH extracts of Thuja accidentalis L. and Juniperus chinensis var. horizontalis Nakai on rats were examined. The concentrates obtained from the organic layer and aqueous layer fractions of each species were orally administered to rats and then their effect on the body weight, organ weight, serum lipids profile, and blood glucose concentration were examined. Among the samples tested, the organic layer of Juniperus chinensis var. horizontalis exhibited the possibility of the hypolipidemic effects. The corresponding layer was chromatographed to give three fractions and reexamined their effects on rats. The results demonstrated that the fraction corresponding for the R$_{f}$ 0.4~0.7 which was the mixture of many minor components showed the effect of lowering the blood-lipid bevel effectively without any side effects. Besides, communic acid, identified from and isolated as a major component of the species exhibited the possibe hypolipidemic effects.s.

  • PDF

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris (발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구)

  • Ji Seung Han;Peijin Li;Tae-Jin Choi;Seok Jin Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.878-888
    • /
    • 2023
  • Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum growth rates (µmax) of C. vulgaris were highest under the blue LED, followed by the red LED, green LED, and fluorescent lamps. The low compensation photon flux density (I0) and low half-saturation constants (Ks) were observed in C. vulgaris cultured under the red LED, indicating that high C. vulgaris growth is closely related to the low light intensity of the red LED suggesting that the red LED can be useful for the biomass production of C. vulgaris. Furthermore, it was observed that under the blue LED during the stationary phase, there was an increase in useful bioactive substances, such as proteins and lipids, which are beneficial for biomass production. In conclusion, the red LED is an economical light source that can enhance cell density, and the blue LED is effective in promoting valuable intracellular substances.