Acknowledgement
This research was supported by the Gachon University research fund of 2019 (GCU-2019-0705) and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) to T.S.P. (2020R1A2C2012833) and W.J.P. (2016R1D1A1B04930619).
References
- Adams, J. M., 2nd, Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C. and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25-31. https://doi.org/10.2337/diabetes.53.1.25
- Argraves, K. M., Sethi, A. A., Gazzolo, P. J., Wilkerson, B. A., Remaley, A. T., Tybjaerg-Hansen, A., Nordestgaard, B. G., Yeatts, S. D., Nicholas, K. S., Barth, J. L. and Argraves, W. S. (2011) S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis. 10, 70. https://doi.org/10.1186/1476-511X-10-70
- Bergman, B. C., Brozinick, J. T., Strauss, A., Bacon, S., Kerege, A., Bui, H. H., Sanders, P., Siddall, P., Kuo, M. S. and Perreault, L. (2015) Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Endocrinol. Metab. 309, E398-E408. https://doi.org/10.1152/ajpendo.00134.2015
- Bhunia, A. K., Han, H., Snowden, A. and Chatterjee, S. (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 272, 15642-15649. https://doi.org/10.1074/jbc.272.25.15642
- Bietrix, F., Lombardo, E., van Roomen, C. P., Ottenhoff, R., Vos, M., Rensen, P. C., Verhoeven, A. J., Aerts, J. M. and Groen, A. K. (2010) Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice. Arterioscler. Thromb. Vasc. Biol. 30, 931-937. https://doi.org/10.1161/ATVBAHA.109.201673
- Bikman, B. T., Guan, Y., Shui, G., Siddique, M. M., Holland, W. L., Kim, J. Y., Fabrias, G., Wenk, M. R. and Summers, S. A. (2012) Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J. Biol. Chem. 287, 17426-17437. https://doi.org/10.1074/jbc.M112.359950
- Blom, T., Back, N., Mutka, A. L., Bittman, R., Li, Z., de Lera, A., Kovanen, P. T., Diczfalusy, U. and Ikonen, E. (2010) FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ. Res. 106, 720-729. https://doi.org/10.1161/CIRCRESAHA.109.204396
- Bobryshev, Y. V., Lord, R. S., Golovanova, N. K., Gracheva, E. V., Zvezdina, N. D., Sadovskaya, V. L. and Prokazova, N. V. (1997) Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. Biochim. Biophys. Acta 1361, 287-294. https://doi.org/10.1016/S0925-4439(97)00044-6
- Boon, J., Hoy, A. J., Stark, R., Brown, R. D., Meex, R. C., Henstridge, D. C., Schenk, S., Meikle, P. J., Horowitz, J. F., Kingwell, B. A., Bruce, C. R. and Watt, M. J. (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401-410. https://doi.org/10.2337/db12-0686
- Breckenridge, W. C., Halloran, J. L., Kovacs, K. and Silver, M. D. (1975) Increase of gangliosides in atherosclerotic human aortas. Lipids 10, 256-259. https://doi.org/10.1007/BF02532490
- Campana, M., Bellini, L., Rouch, C., Rachdi, L., Coant, N., Butin, N., Bandet, C. L., Philippe, E., Meneyrol, K., Kassis, N., Dairou, J., Hajduch, E., Colsch, B., Magnan, C. and Le Stunff, H. (2018) Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances beta-cell function of obese Zucker rats. Mol. Metab. 8, 23-36. https://doi.org/10.1016/j.molmet.2017.10.013
- Castro, B. M., Prieto, M. and Silva, L. C. (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53-67. https://doi.org/10.1016/j.plipres.2014.01.004
- Chatterjee, S., Bedja, D., Mishra, S., Amuzie, C., Avolio, A., Kass, D. A., Berkowitz, D. and Renehan, M. (2014) Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation 129, 2403-2413. https://doi.org/10.1161/CIRCULATIONAHA.113.007559
- Chatterjee, S. B., Dey, S., Shi, W. Y., Thomas, K. and Hutchins, G. M. (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7, 57-65. https://doi.org/10.1093/glycob/7.1.57
- Chaurasia, B. and Summers, S. A. (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538-550. https://doi.org/10.1016/j.tem.2015.07.006
- Chaurasia, B., Tippetts, T. S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J. L., Sweeney, C. R., Pereira, R. F., Sumida, D. H., Maschek, J. A., Cox, J. E., Kaddai, V., Lancaster, G. I., Siddique, M. M., Poss, A., Pearson, M., Satapati, S., Zhou, H., McLaren, D. G., Previs, S. F., Chen, Y., Qian, Y., Petrov, A., Wu, M., Shen, X., Yao, J., Nunes, C. N., Howard, A. D., Wang, L., Erion, M. D., Rutter, J., Holland, W. L., Kelley, D. E. and Summers, S. A. (2019) Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386-392. https://doi.org/10.1126/science.aav3722
- Chavez, J. A., Holland, W. L., Bar, J., Sandhoff, K. and Summers, S. A. (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 280, 20148-20153. https://doi.org/10.1074/jbc.M412769200
- Chavez, J. A., Knotts, T. A., Wang, L. P., Li, G., Dobrowsky, R. T., Florant, G. L. and Summers, S. A. (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 278, 10297-10303. https://doi.org/10.1074/jbc.M212307200
- Chavez, J. A. and Summers, S. A. (2012) A ceramide-centric view of insulin resistance. Cell Metab. 15, 585-594. https://doi.org/10.1016/j.cmet.2012.04.002
- Cheng, J. M., Suoniemi, M., Kardys, I., Vihervaara, T., de Boer, S. P., Akkerhuis, K. M., Sysi-Aho, M., Ekroos, K., Garcia-Garcia, H. M., Oemrawsingh, R. M., Regar, E., Koenig, W., Serruys, P. W., van Geuns, R. J., Boersma, E. and Laaksonen, R. (2015a) Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis 243, 560-566. https://doi.org/10.1016/j.atherosclerosis.2015.10.022
- Cheng, L., Chen, Y. Z., Peng, Y., Yi, N., Gu, X. S., Jin, Y. and Bai, X. M. (2015b) Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 36, 5763-5771. https://doi.org/10.1007/s13277-015-3245-1
- de Mello, V. D., Lankinen, M., Schwab, U., Kolehmainen, M., Lehto, S., Seppanen-Laakso, T., Oresic, M., Pulkkinen, L., Uusitupa, M. and Erkkila, A. T. (2009) Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52, 2612-2615. https://doi.org/10.1007/s00125-009-1482-9
- Dekker, M. J., Baker, C., Naples, M., Samsoondar, J., Zhang, R., Qiu, W., Sacco, J. and Adeli, K. (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228, 98-109. https://doi.org/10.1016/j.atherosclerosis.2013.01.041
- Delgado, A., Casas, J., Llebaria, A., Abad, J. L. and Fabrias, G. (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim. Biophys. Acta 1758, 1957-1977. https://doi.org/10.1016/j.bbamem.2006.08.017
- Deutschman, D. H., Carstens, J. S., Klepper, R. L., Smith, W. S., Page, M. T., Young, T. R., Gleason, L. A., Nakajima, N. and Sabbadini, R. A. (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am. Heart J. 146, 62-68. https://doi.org/10.1016/S0002-8703(03)00118-2
- Devlin, C. M., Leventhal, A. R., Kuriakose, G., Schuchman, E. H., Williams, K. J. and Tabas, I. (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler. Thromb. Vasc. Biol. 28, 1723-1730. https://doi.org/10.1161/ATVBAHA.108.173344
- Dong, J., Liu, J., Lou, B., Li, Z., Ye, X., Wu, M. and Jiang, X. C. (2006) Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J. Lipid Res. 47, 1307-1314. https://doi.org/10.1194/jlr.M600040-JLR200
- Ebel, P., Imgrund, S., Vom Dorp, K., Hofmann, K., Maier, H., Drake, H., Degen, J., Dormann, P., Eckhardt, M., Franz, T. and Willecke, K. (2014) Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 461, 147-158. https://doi.org/10.1042/BJ20131242
- Ebel, P., Vom Dorp, K., Petrasch-Parwez, E., Zlomuzica, A., Kinugawa, K., Mariani, J., Minich, D., Ginkel, C., Welcker, J., Degen, J., Eckhardt, M., Dere, E., Dormann, P. and Willecke, K. (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J. Biol. Chem. 288, 21433-21447. https://doi.org/10.1074/jbc.M113.479907
- Fabbri, E., Yang, A., Simonsick, E. M., Chia, C. W., Zoli, M., Haughey, N. J., Mielke, M. M., Ferrucci, L. and Coen, P. M. (2016) Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54-96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 15, 825-831. https://doi.org/10.1111/acel.12491
- Fettel, J., Kuhn, B., Guillen, N. A., Surun, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnutgen, F., Meyer Zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J. and Maier, T. J. (2019) Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity. FASEB J. 33, 1711-1726. https://doi.org/10.1096/fj.201800221R
- Gable, K., Slife, H., Bacikova, D., Monaghan, E. and Dunn, T. M. (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275, 7597-7603. https://doi.org/10.1074/jbc.275.11.7597
- Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689-711. https://doi.org/10.1007/s10495-015-1109-1
- Garner, B., Priestman, D. A., Stocker, R., Harvey, D. J., Butters, T. D. and Platt, F. M. (2002) Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J. Lipid Res. 43, 205-214. https://doi.org/10.1016/S0022-2275(20)30162-0
- Gault, C. R., Obeid, L. M. and Hannun, Y. A. (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23. https://doi.org/10.1007/978-1-4419-6741-1_1
- Glaros, E. N., Kim, W. S., Wu, B. J., Suarna, C., Quinn, C. M., Rye, K. A., Stocker, R., Jessup, W. and Garner, B. (2007) Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73, 1340-1346. https://doi.org/10.1016/j.bcp.2006.12.023
- Gong, N., Wei, H., Chowdhury, S. H. and Chatterjee, S. (2004) Lactosylceramide recruits PKCalpha/epsilon and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 101, 6490-6495. https://doi.org/10.1073/pnas.0308684101
- Gracheva, E. V., Samovilova, N. N., Golovanova, N. K., Kashirina, S. V., Shevelev, A., Rybalkin, I., Gurskaya, T., Vlasik, T. N., Andreeva, E. R. and Prokazova, N. V. (2009) Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol. Cell. Biochem. 330, 121-129. https://doi.org/10.1007/s11010-009-0125-2
- Hailemariam, T. K., Huan, C., Liu, J., Li, Z., Roman, C., Kalbfeisch, M., Bui, H. H., Peake, D. A., Kuo, M. S., Cao, G., Wadgaonkar, R. and Jiang, X. C. (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler. Thromb. Vasc. Biol. 28, 1519-1526. https://doi.org/10.1161/ATVBAHA.108.168682
- Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S. and Spiegel, S. (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta 1758, 2016-2026. https://doi.org/10.1016/j.bbamem.2006.08.007
- Hammerschmidt, P., Ostkotte, D., Nolte, H., Gerl, M. J., Jais, A., Brunner, H. L., Sprenger, H. G., Awazawa, M., Nicholls, H. T., TurpinNolan, S. M., Langer, T., Kruger, M., Brugger, B. and Bruning, J. C. (2019) CerS6-derived sphingolipids interact with Mff and Promote mitochondrial fragmentation in obesity. Cell 177, 1536-1552.e23. https://doi.org/10.1016/j.cell.2019.05.008
- Hanada, K. (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30. https://doi.org/10.1016/S1388-1981(03)00059-3
- Haus, J. M., Kashyap, S. R., Kasumov, T., Zhang, R., Kelly, K. R., Defronzo, R. A. and Kirwan, J. P. (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337-343. https://doi.org/10.2337/db08-1228
- Havulinna, A. S., Sysi-Aho, M., Hilvo, M., Kauhanen, D., Hurme, R., Ekroos, K., Salomaa, V. and Laaksonen, R. (2016) Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424-2430. https://doi.org/10.1161/ATVBAHA.116.307497
- Hla, T. and Dannenberg, A. J. (2012) Sphingolipid signaling in metabolic disorders. Cell Metab. 16, 420-434. https://doi.org/10.1016/j.cmet.2012.06.017
- Hla, T. and Kolesnick, R. (2014) C16:0-ceramide signals insulin resistance. Cell Metab. 20, 703-705. https://doi.org/10.1016/j.cmet.2014.10.017
- Hojjati, M. R., Li, Z., Zhou, H., Tang, S., Huan, C., Ooi, E., Lu, S. and Jiang, X. C. (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280, 10284-10289. https://doi.org/10.1074/jbc.M412348200
- Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Karathanasis, S. K., Fontenot, G. K., Birnbaum, M. J. and Summers, S. A. (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167-179. https://doi.org/10.1016/j.cmet.2007.01.002
- Holland, W. L., Miller, R. A., Wang, Z. V., Sun, K., Barth, B. M., Bui, H. H., Davis, K. E., Bikman, B. T., Halberg, N., Rutkowski, J. M., Wade, M. R., Tenorio, V. M., Kuo, M. S., Brozinick, J. T., Zhang, B. B., Birnbaum, M. J., Summers, S. A. and Scherer, P. E. (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55-63. https://doi.org/10.1038/nm.2277
- Holland, W. L., Xia, J. Y., Johnson, J. A., Sun, K., Pearson, M. J., Sharma, A. X., Quittner-Strom, E., Tippetts, T. S., Gordillo, R. and Scherer, P. E. (2017) Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267-275. https://doi.org/10.1016/j.molmet.2017.01.002
- Hornemann, T., Richard, S., Rutti, M. F., Wei, Y. and von Eckardstein, A. (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275-37281. https://doi.org/10.1074/jbc.M608066200
- Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K. and Willecke, K. (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549-33560. https://doi.org/10.1074/jbc.M109.031971
- Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., Nickel, W., Willecke, K., Riezman, H., Grone, H. J. and Sandhoff, R. (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586-608. https://doi.org/10.1093/hmg/ddr494
- Jiang, X. C., Paultre, F., Pearson, T. A., Reed, R. G., Francis, C. K., Lin, M., Berglund, L. and Tall, A. R. (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20, 2614-2618. https://doi.org/10.1161/01.ATV.20.12.2614
- Jiao, G. Q., Yuan, Z. X., Xue, Y. S., Yang, C. J., Lu, C. B., Lu, Z. Q. and Xiao, M. D. (2007) A prospective evaluation of apolipoprotein M gene T-778C polymorphism in relation to coronary artery disease in Han Chinese. Clin. Biochem. 40, 1108-1112. https://doi.org/10.1016/j.clinbiochem.2007.04.023
- Jin, J., Zhang, X., Lu, Z., Perry, D. M., Li, Y., Russo, S. B., Cowart, L. A., Hannun, Y. A. and Huang, Y. (2013) Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am. J. Physiol. Endocrinol. Metab. 305, E853-E867.
- Johansson, H., Gandini, S., Guerrieri-Gonzaga, A., Iodice, S., Ruscica, M., Bonanni, B., Gulisano, M., Magni, P., Formelli, F. and Decensi, A. (2008) Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer. Cancer. Res. 68, 9512-9518. https://doi.org/10.1158/0008-5472.CAN-08-0553
- Kasumov, T., Li, L., Li, M., Gulshan, K., Kirwan, J. P., Liu, X., Previs, S., Willard, B., Smith, J. D. and McCullough, A. (2015) Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910. https://doi.org/10.1371/journal.pone.0126910
- Keul, P., Lucke, S., von Wnuck Lipinski, K., Bode, C., Graler, M., Heusch, G. and Levkau, B. (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ. Res. 108, 314-323. https://doi.org/10.1161/CIRCRESAHA.110.235028
- Keul, P., Tolle, M., Lucke, S., von Wnuck Lipinski, K., Heusch, G., Schuchardt, M., van der Giet, M. and Levkau, B. (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 607-613. https://doi.org/10.1161/01.ATV.0000254679.42583.88
- Knapp, M., Baranowski, M., Czarnowski, D., Lisowska, A., Zabielski, P., Gorski, J. and Musial, W. (2009) Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med. Sci. Monit. 15, CR490-CR493.
- Knapp, M., Lisowska, A., Zabielski, P., Musial, W. and Baranowski, M. (2013) Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 106, 53-61. https://doi.org/10.1016/j.prostaglandins.2013.10.001
- Koh, I. U., Jun, H. S., Choi, J. S., Lim, J. H., Kim, W. H., Yoon, J. B. and Song, J. (2012) Fenretinide ameliorates insulin resistance and fatty liver in obese mice. Biol. Pharm. Bull. 35, 369-375. https://doi.org/10.1248/bpb.35.369
- Kolesnick, R. (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3-8. https://doi.org/10.1172/JCI16127
- Kraveka, J. M., Li, L., Szulc, Z. M., Bielawski, J., Ogretmen, B., Hannun, Y. A., Obeid, L. M. and Bielawska, A. (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 282, 16718-16728. https://doi.org/10.1074/jbc.M700647200
- Kurano, M. and Yatomi, Y. (2018) Sphingosine 1-phosphate and atherosclerosis. J. Atheroscler. Thromb. 25, 16-26. https://doi.org/10.5551/jat.RV17010
- Kurek, K., Piotrowska, D. M., Wiesiolek-Kurek, P., Lukaszuk, B., Chabowski, A., Gorski, J. and Zendzian-Piotrowska, M. (2014) Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074-1083. https://doi.org/10.1111/liv.12331
- Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., Suoniemi, M., Hurme, R., Marz, W., Scharnagl, H., Stojakovic, T., Vlachopoulou, E., Lokki, M. L., Nieminen, M. S., Klingenberg, R., Matter, C. M., Hornemann, T., Juni, P., Rodondi, N., Raber, L., Windecker, S., Gencer, B., Pedersen, E. R., Tell, G. S., Nygard, O., Mach, F., Sinisalo, J. and Luscher, T. F. (2016) Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967-1976. https://doi.org/10.1093/eurheartj/ehw148
- Lallemand, T., Rouahi, M., Swiader, A., Grazide, M. H., Geoffre, N., Alayrac, P., Recazens, E., Coste, A., Salvayre, R., Negre-Salvayre, A. and Auge, N. (2018) nSMase2 (type 2-neutral sphingomyelinase) deficiency or inhibition by GW4869 reduces inflammation and atherosclerosis in Apoe(-/-) mice. Arterioscler. Thromb. Vasc. Biol. 38, 1479-1492. https://doi.org/10.1161/ATVBAHA.118.311208
- Lemaitre, R. N., Yu, C., Hoofnagle, A., Hari, N., Jensen, P. N., Fretts, A. M., Umans, J. G., Howard, B. V., Sitlani, C. M., Siscovick, D. S., King, I. B., Sotoodehnia, N. and McKnight, B. (2018) Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663-1672. https://doi.org/10.2337/db17-1449
- Li, M., Markham, J. E. and Wang, X. (2014) Overexpression of patatin-related phospholipase AIIIbeta altered the content and composition of sphingolipids in Arabidopsis. Front. Plant Sci. 5, 553.
- Li, Z., Fan, Y., Liu, J., Li, Y., Huan, C., Bui, H. H., Kuo, M. S., Park, T. S., Cao, G. and Jiang, X. C. (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1577-1584. https://doi.org/10.1161/ATVBAHA.112.251538
- Liu, J., Huan, C., Chakraborty, M., Zhang, H., Lu, D., Kuo, M. S., Cao, G. and Jiang, X. C. (2009) Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105, 295-303. https://doi.org/10.1161/CIRCRESAHA.109.194613
- Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., Rosenfeldt, H. M., Nava, V. E., Chae, S. S., Lee, M. J., Liu, C. H., Hla, T., Spiegel, S. and Proia, R. L. (2000) Edg-1, the G proteincoupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951-961. https://doi.org/10.1172/JCI10905
- Lopez, X., Goldfine, A. B., Holland, W. L., Gordillo, R. and Scherer, P. E. (2013) Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J. Pediatr. Endocrinol. Metab. 26, 995-998. https://doi.org/10.1515/jpem-2012-0407
- Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., Bennett, D., Bhalla, K., Bikbov, B., Bin Abdulhak, A., Birbeck, G., Blyth, F., Bolliger, I., Boufous, S., Bucello, C., Burch, M., Burney, P., Carapetis, J., Chen, H., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, K. E., Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., de Vaccaro, K. C., Couser, W., Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., Dahodwala, N., De Leo, D., Degenhardt, L., Delossantos, A., Denenberg, J., Des Jarlais, D. C., Dharmaratne, S. D., Dorsey, E. R., Driscoll, T., Duber, H., Ebel, B., Erwin, P. J., Espindola, P., Ezzati, M., Feigin, V., Flaxman, A. D., Forouzanfar, M. H., Fowkes, F. G., Franklin, R., Fransen, M., Freeman, M. K., Gabriel, S. E., Gakidou, E., Gaspari, F., Gillum, R. F., Gonzalez-Medina, D., Halasa, Y. A., Haring, D., Harrison, J. E., Havmoeller, R., Hay, R. J., Hoen, B., Hotez, P. J., Hoy, D., Jacobsen, K. H., James, S. L., Jasrasaria, R., Jayaraman, S., Johns, N., Karthikeyan, G., Kassebaum, N., Keren, A., Khoo, J. P., Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Lipnick, M., Lipshultz, S. E., Ohno, S. L., Mabweijano, J., MacIntyre, M. F., Mallinger, L., March, L., Marks, G. B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. M., McAnulty, J. H., McDermott, M. M., McGrath, J., Mensah, G. A., Merriman, T. R., Michaud, C., Miller, M., Miller, T. R., Mock, C., Mocumbi, A. O., Mokdad, A. A., Moran, A., Mulholland, K., Nair, M. N., Naldi, L., Narayan, K. M., Nasseri, K., Norman, P., O'Donnell, M., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Pahari, B., Pandian, J. D., Rivero, A. P., Padilla, R. P., Perez-Ruiz, F., Perico, N., Phillips, D., Pierce, K., Pope, C. A., 3rd, Porrini, E., Pourmalek, F., Raju, M., Ranganathan, D., Rehm, J. T., Rein, D. B., Remuzzi, G., Rivara, F. P., Roberts, T., De Leon, F. R., Rosenfeld, L. C., Rushton, L., Sacco, R. L., Salomon, J. A., Sampson, U., Sanman, E., Schwebel, D. C., Segui-Gomez, M., Shepard, D. S., Singh, D., Singleton, J., Sliwa, K., Smith, E., Steer, A., Taylor, J. A., Thomas, B., Tleyjeh, I. M., Towbin, J. A., Truelsen, T., Undurraga, E. A., Venketasubramanian, N., Vijayakumar, L., Vos, T., Wagner, G. R., Wang, M., Wang, W., Watt, K., Weinstock, M. A., Weintraub, R., Wilkinson, J. D., Woolf, A. D., Wulf, S., Yeh, P. H., Yip, P., Zabetian, A., Zheng, Z. J., Lopez, A. D., Murray, C. J., AlMazroa, M. A. and Memish, Z. A. (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095-2128. https://doi.org/10.1016/S0140-6736(12)61728-0
- Maceyka, M. and Spiegel, S. (2014) Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67. https://doi.org/10.1038/nature13475
- Manicke, N. E., Nefliu, M., Wu, C., Woods, J. W., Reiser, V., Hendrickson, R. C. and Cooks, R. G. (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem. 81, 8702-8707. https://doi.org/10.1021/ac901739s
- Marathe, S., Kuriakose, G., Williams, K. J. and Tabas, I. (1999) Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 19, 2648-2658. https://doi.org/10.1161/01.ATV.19.11.2648
- Maula, T., Al Sazzad, M. A. and Slotte, J. P. (2015) Influence of hydroxylation, chain length, and chain unsaturation on bilayer properties of ceramides. Biophys. J. 109, 1639-1651. https://doi.org/10.1016/j.bpj.2015.08.040
- Meeusen, J. W., Donato, L. J., Bryant, S. C., Baudhuin, L. M., Berger, P. B. and Jaffe, A. S. (2018) Plasma ceramides. Arterioscler. Thromb. Vasc. Biol. 38, 1933-1939. https://doi.org/10.1161/atvbaha.118.311199
- Meikle, P. J., Wong, G., Tsorotes, D., Barlow, C. K., Weir, J. M., Christopher, M. J., MacIntosh, G. L., Goudey, B., Stern, L., Kowalczyk, A., Haviv, I., White, A. J., Dart, A. M., Duffy, S. J., Jennings, G. L. and Kingwell, B. A. (2011) Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31, 2723-2732. https://doi.org/10.1161/ATVBAHA.111.234096
- Merrill, A. H., Jr. (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843-25846. https://doi.org/10.1074/jbc.R200009200
- Michaud, J., Im, D. S. and Hla, T. (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475-1483. https://doi.org/10.4049/jimmunol.0901586
- Mody, N. and McIlroy, G. D. (2014) The mechanisms of Fenretinidemediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem. Pharmacol. 91, 277-286. https://doi.org/10.1016/j.bcp.2014.07.012
- Mukhin, D. N., Chao, F. F. and Kruth, H. S. (1995) Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15, 1607-1615. https://doi.org/10.1161/01.ATV.15.10.1607
- Munoz-Olaya, J. M., Matabosch, X., Bedia, C., Egido-Gabas, M., Casas, J., Llebaria, A., Delgado, A. and Fabrias, G. (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. ChemMedChem 3, 946-953. https://doi.org/10.1002/cmdc.200700325
- Murray, C. J. and Lopez, A. D. (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269-1276. https://doi.org/10.1016/S0140-6736(96)07493-4
- Neeland, I. J., Singh, S., McGuire, D. K., Vega, G. L., Roddy, T., Reilly, D. F., Castro-Perez, J., Kozlitina, J. and Scherer, P. E. (2018) Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia 61, 2570-2579. https://doi.org/10.1007/s00125-018-4720-1
- Nicholls, M. (2017) Plasma ceramides and cardiac risk. Eur. Heart J. 38, 1359-1360. https://doi.org/10.1093/eurheartj/ehx205
- Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y. and Suzuki, A. (2004) DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687-695. https://doi.org/10.1042/BJ20031425
- Pan, W., Yu, J., Shi, R., Yan, L., Yang, T., Li, Y., Zhang, Z., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2014) Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron. Artery Dis. 25, 230-235. https://doi.org/10.1097/mca.0000000000000079
- Park, J. W., Park, W. J. and Futerman, A. H. (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681. https://doi.org/10.1016/j.bbalip.2013.08.019
- Park, T. S., Panek, R. L., Mueller, S. B., Hanselman, J. C., Rosebury, W. S., Robertson, A. W., Kindt, E. K., Homan, R., Karathanasis, S. K. and Rekhter, M. D. (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110, 3465-3471. https://doi.org/10.1161/01.CIR.0000148370.60535.22
- Park, T. S., Panek, R. L., Rekhter, M. D., Mueller, S. B., Rosebury, W. S., Robertson, A., Hanselman, J. C., Kindt, E., Homan, R. and Karathanasis, S. K. (2006) Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189, 264-272. https://doi.org/10.1016/j.atherosclerosis.2005.12.029
- Park, T. S., Rosebury, W., Kindt, E. K., Kowala, M. C. and Panek, R. L. (2008) Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoEdeficient mice. Pharmacol. Res. 58, 45-51. https://doi.org/10.1016/j.phrs.2008.06.005
- Peterson, L. R., Xanthakis, V., Duncan, M. S., Gross, S., Friedrich, N., Volzke, H., Felix, S. B., Jiang, H., Sidhu, R., Nauck, M., Jiang, X., Ory, D. S., Dorr, M., Vasan, R. S. and Schaffer, J. E. (2018) Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7, e007931. https://doi.org/10.1161/JAHA.117.007931
- Pewzner-Jung, Y., Ben-Dor, S. and Futerman, A. H. (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001-25005. https://doi.org/10.1074/jbc.R600010200
- Polzin, A., Piayda, K., Keul, P., Dannenberg, L., Mohring, A., Graler, M., Zeus, T., Kelm, M. and Levkau, B. (2017) Plasma sphingosine1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. J. Mol. Cell. Cardiol. 110, 35-37. https://doi.org/10.1016/j.yjmcc.2017.07.004
- Portman, O. W. and Alexander, M. (1970) Metabolism of sphingolipids by normal and atherosclerotic aorta of squirrel monkeys. J. Lipid Res. 11, 23-30. https://doi.org/10.1016/S0022-2275(20)43012-3
- Poti, F., Ceglarek, U., Burkhardt, R., Simoni, M. and Nofer, J. R. (2015) SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet. Atherosclerosis 240, 212-215. https://doi.org/10.1016/j.atherosclerosis.2015.03.020
- Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. and Nofer, J. R. (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice. Arterioscler. Thromb. Vasc. Biol. 33, 1505-1512. https://doi.org/10.1161/ATVBAHA.113.301347
- Preitner, F., Mody, N., Graham, T. E., Peroni, O. D. and Kahn, B. B. (2009) Long-term Fenretinide treatment prevents high-fat dietinduced obesity, insulin resistance, and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 297, E1420-E1429. https://doi.org/10.1152/ajpendo.00362.2009
- Prokazova, N. V., Mikhailenko, I. A. and Bergelson, L. D. (1991) Ganglioside GM3 stimulates the uptake and processing of low density lipoproteins by macrophages. Biochem. Biophys. Res. Commun. 177, 582-587. https://doi.org/10.1016/0006-291X(91)92023-D
- Reibe-Pal, S. and Febbraio, M. A. (2017) Adiponectin serenades ceramidase to improve metabolism. Mol. Metab. 6, 233-235. https://doi.org/10.1016/j.molmet.2017.01.011
- Rodriguez-Cuenca, S., Barbarroja, N. and Vidal-Puig, A. (2015) Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50. https://doi.org/10.1016/j.bbalip.2014.09.021
- Sasset, L., Zhang, Y., Dunn, T. M. and Di Lorenzo, A. (2016) Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol. Metab. 27, 807-819. https://doi.org/10.1016/j.tem.2016.07.005
- Sattler, K., Lehmann, I., Graler, M., Brocker-Preuss, M., Erbel, R., Heusch, G. and Levkau, B. (2014) HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell. Physiol. Biochem. 34, 172-184. https://doi.org/10.1159/000362993
- Sattler, K. J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M. H., Brocker-Preuss, M., Budde, T., Erbel, R., Heusch, G. and Levkau, B. (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol. 105, 821-832. https://doi.org/10.1007/s00395-010-0112-5
- Schissel, S. L., Tweedie-Hardman, J., Rapp, J. H., Graham, G., Williams, K. J. and Tabas, I. (1996) Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98, 1455-1464. https://doi.org/10.1172/JCI118934
- Sigruener, A., Kleber, M. E., Heimerl, S., Liebisch, G., Schmitz, G. and Maerz, W. (2014) Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS ONE 9, e85724. https://doi.org/10.1371/journal.pone.0085724
- Skoura, A., Michaud, J., Im, D. S., Thangada, S., Xiong, Y., Smith, J. D. and Hla, T. (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81-85. https://doi.org/10.1161/ATVBAHA.110.213496
- Smith, E. B. (1960) Intimal and medial lipids in human aortas. Lancet 1, 799-803. https://doi.org/10.1016/S0140-6736(60)90680-2
- Summers, S. A. (2018) Could ceramides become the new cholesterol? Cell Metab. 27, 276-280. https://doi.org/10.1016/j.cmet.2017.12.003
- Takahashi, C., Kurano, M., Nishikawa, M., Kano, K., Dohi, T., Miyauchi, K., Daida, H., Shimizu, T., Aoki, J. and Yatomi, Y. (2017) Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. J. Atheroscler. Thromb. 24, 954-969. https://doi.org/10.5551/jat.37663
- Tarasov, K., Ekroos, K., Suoniemi, M., Kauhanen, D., Sylvanne, T., Hurme, R., Gouni-Berthold, I., Berthold, H. K., Kleber, M. E., Laaksonen, R. and Marz, W. (2014) Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 99, E45-E52. https://doi.org/10.1210/jc.2013-2559
- Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann, J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hildebrand, R., Schulz, R., Heusch, G., Haude, M., von Wnuck Lipinski, K., Herzog, C., Schmitz, M., Erbel, R., Chun, J. and Levkau, B. (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114, 1403-1409. https://doi.org/10.1161/CIRCULATIONAHA.105.607135
- Turpin, S. M., Nicholls, H. T., Willmes, D. M., Mourier, A., Brodesser, S., Wunderlich, C. M., Mauer, J., Xu, E., Hammerschmidt, P., Bronneke, H. S., Trifunovic, A., LoSasso, G., Wunderlich, F. T., Kornfeld, J. W., Bluher, M., Kronke, M. and Bruning, J. C. (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678-686. https://doi.org/10.1016/j.cmet.2014.08.002
- Walters, M. J. and Wrenn, S. P. (2008) Effect of sphingomyelinase-mediated generation of ceramide on aggregation of low-density lipoprotein. Langmuir 24, 9642-9647. https://doi.org/10.1021/la800714w
- Wang, D. D., Toledo, E., Hruby, A., Rosner, B. A., Willett, W. C., Sun, Q., Razquin, C., Zheng, Y., Ruiz-Canela, M., Guasch-Ferre, M., Corella, D., Gomez-Gracia, E., Fiol, M., Estruch, R., Ros, E., Lapetra, J., Fito, M., Aros, F., Serra-Majem, L., Lee, C. H., Clish, C. B., Liang, L., Salas-Salvado, J., Martinez-Gonzalez, M. A. and Hu, F. B. (2017) Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED Trial (Prevencion con Dieta Mediterranea). Circulation 135, 2028-2040. https://doi.org/10.1161/CIRCULATIONAHA.116.024261
- Wang, G., Kim, R. Y., Imhof, I., Honbo, N., Luk, F. S., Li, K., Kumar, N., Zhu, B. Q., Eberle, D., Ching, D., Karliner, J. S. and Raffai, R. L. (2014) The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J. Cardiovasc. Pharmacol. 63, 132-143. https://doi.org/10.1097/fjc.0000000000000031
- Wang, X., Dong, J., Zhao, Y., Li, Y. and Wu, M. (2011) Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice. Lipids Health Dis. 10, 7. https://doi.org/10.1186/1476-511X-10-7
- Wigger, L., Cruciani-Guglielmacci, C., Nicolas, A., Denom, J., Fernandez, N., Fumeron, F., Marques-Vidal, P., Ktorza, A., Kramer, W., Schulte, A., Le Stunff, H., Liechti, R., Xenarios, I., Vollenweider, P., Waeber, G., Uphues, I., Roussel, R., Magnan, C., Ibberson, M. and Thorens, B. (2017) Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18, 2269-2279. https://doi.org/10.1016/j.celrep.2017.02.019
- Wolfrum, C., Poy, M. N. and Stoffel, M. (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418-422. https://doi.org/10.1038/nm1211
- Xia, J. Y., Holland, W. L., Kusminski, C. M., Sun, K., Sharma, A. X., Pearson, M. J., Sifuentes, A. J., McDonald, J. G., Gordillo, R. and Scherer, P. E. (2015) Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266-278. https://doi.org/10.1016/j.cmet.2015.06.007
- Xu, W. W., Zhang, Y., Tang, Y. B., Xu, Y. L., Zhu, H. Z., Ferro, A., Ji, Y., Chen, Q. and Fan, L. M. (2008) A genetic variant of apolipoprotein M increases susceptibility to coronary artery disease in a Chinese population. Clin. Exp. Pharmacol. Physiol. 35, 546-551. https://doi.org/10.1111/j.1440-1681.2007.04822.x
- Yu, J., Pan, W., Shi, R., Yang, T., Li, Y., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2015) Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can. J. Cardiol. 31, 357-363. https://doi.org/10.1016/j.cjca.2014.12.007
- Zabielski, P., Daniluk, J., Hady, H. R., Markowski, A. R., Imierska, M., Gorski, J. and Blachnio-Zabielska, A. U. (2019) The effect of highfat diet and inhibition of ceramide production on insulin action in liver. J. Cell. Physiol. 234, 1851-1861. https://doi.org/10.1002/jcp.27058
- Zhang, Q. J., Holland, W. L., Wilson, L., Tanner, J. M., Kearns, D., Cahoon, J. M., Pettey, D., Losee, J., Duncan, B., Gale, D., Kowalski, C. A., Deeter, N., Nichols, A., Deesing, M., Arrant, C., Ruan, T., Boehme, C., McCamey, D. R., Rou, J., Ambal, K., Narra, K. K., Summers, S. A., Abel, E. D. and Symons, J. D. (2012) Ceramide mediates vascular dysfunction in diet-induced obesity by PP2Amediated dephosphorylation of the eNOS-Akt complex. Diabetes 61, 1848-1859. https://doi.org/10.2337/db11-1399
- Zhao, L., Spassieva, S. D., Jucius, T. J., Shultz, L. D., Shick, H. E., Macklin, W. B., Hannun, Y. A., Obeid, L. M. and Ackerman, S. L. (2011) A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 7, e1002063. https://doi.org/10.1371/journal.pgen.1002063
- Zhao, M., Pan, W., Shi, R. Z., Bai, Y. P., You, B. Y., Zhang, K., Fu, Q. M., Schuchman, E. H., He, X. X. and Zhang, G. G. (2016) Acid sphingomyelinase mediates oxidized-LDL induced apoptosis in macrophage via endoplasmic reticulum stress. J. Atheroscler. Thromb. 23, 1111-1125. https://doi.org/10.5551/jat.32383
- Zhao, Y. R., Dong, J. B., Li, Y. and Wu, M. P. (2012) Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 90, 867-873. https://doi.org/10.1016/j.lfs.2012.04.003
- Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M. and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864-1884. https://doi.org/10.1016/j.bbamem.2006.08.009
- Zilversmit, D. B., Mc, C. E., Jordan, P. H., Henly, W. S. and Ackerman, R. F. (1961) The synthesis of phospholipids in human atheromatous lesions. Circulation 23, 370-375. https://doi.org/10.1161/01.CIR.23.3.370
Cited by
- Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets vol.11, pp.11, 2021, https://doi.org/10.3390/diagnostics11112053