DOI QR코드

DOI QR Code

Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease

  • Song, Jae-Hwi (Department of Life Science, Gachon University) ;
  • Kim, Goon-Tae (Department of Life Science, Gachon University) ;
  • Park, Kyung-Ho (Department of Nutrition, Hallym University) ;
  • Park, Woo-Jae (Department of Biochemistry, College of Medicine, Gachon University) ;
  • Park, Tae-Sik (Department of Life Science, Gachon University)
  • Received : 2020.12.03
  • Accepted : 2021.01.06
  • Published : 2021.07.01

Abstract

Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.

Keywords

Acknowledgement

This research was supported by the Gachon University research fund of 2019 (GCU-2019-0705) and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) to T.S.P. (2020R1A2C2012833) and W.J.P. (2016R1D1A1B04930619).

References

  1. Adams, J. M., 2nd, Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C. and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25-31. https://doi.org/10.2337/diabetes.53.1.25
  2. Argraves, K. M., Sethi, A. A., Gazzolo, P. J., Wilkerson, B. A., Remaley, A. T., Tybjaerg-Hansen, A., Nordestgaard, B. G., Yeatts, S. D., Nicholas, K. S., Barth, J. L. and Argraves, W. S. (2011) S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis. 10, 70. https://doi.org/10.1186/1476-511X-10-70
  3. Bergman, B. C., Brozinick, J. T., Strauss, A., Bacon, S., Kerege, A., Bui, H. H., Sanders, P., Siddall, P., Kuo, M. S. and Perreault, L. (2015) Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Endocrinol. Metab. 309, E398-E408. https://doi.org/10.1152/ajpendo.00134.2015
  4. Bhunia, A. K., Han, H., Snowden, A. and Chatterjee, S. (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 272, 15642-15649. https://doi.org/10.1074/jbc.272.25.15642
  5. Bietrix, F., Lombardo, E., van Roomen, C. P., Ottenhoff, R., Vos, M., Rensen, P. C., Verhoeven, A. J., Aerts, J. M. and Groen, A. K. (2010) Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice. Arterioscler. Thromb. Vasc. Biol. 30, 931-937. https://doi.org/10.1161/ATVBAHA.109.201673
  6. Bikman, B. T., Guan, Y., Shui, G., Siddique, M. M., Holland, W. L., Kim, J. Y., Fabrias, G., Wenk, M. R. and Summers, S. A. (2012) Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J. Biol. Chem. 287, 17426-17437. https://doi.org/10.1074/jbc.M112.359950
  7. Blom, T., Back, N., Mutka, A. L., Bittman, R., Li, Z., de Lera, A., Kovanen, P. T., Diczfalusy, U. and Ikonen, E. (2010) FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ. Res. 106, 720-729. https://doi.org/10.1161/CIRCRESAHA.109.204396
  8. Bobryshev, Y. V., Lord, R. S., Golovanova, N. K., Gracheva, E. V., Zvezdina, N. D., Sadovskaya, V. L. and Prokazova, N. V. (1997) Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. Biochim. Biophys. Acta 1361, 287-294. https://doi.org/10.1016/S0925-4439(97)00044-6
  9. Boon, J., Hoy, A. J., Stark, R., Brown, R. D., Meex, R. C., Henstridge, D. C., Schenk, S., Meikle, P. J., Horowitz, J. F., Kingwell, B. A., Bruce, C. R. and Watt, M. J. (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401-410. https://doi.org/10.2337/db12-0686
  10. Breckenridge, W. C., Halloran, J. L., Kovacs, K. and Silver, M. D. (1975) Increase of gangliosides in atherosclerotic human aortas. Lipids 10, 256-259. https://doi.org/10.1007/BF02532490
  11. Campana, M., Bellini, L., Rouch, C., Rachdi, L., Coant, N., Butin, N., Bandet, C. L., Philippe, E., Meneyrol, K., Kassis, N., Dairou, J., Hajduch, E., Colsch, B., Magnan, C. and Le Stunff, H. (2018) Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances beta-cell function of obese Zucker rats. Mol. Metab. 8, 23-36. https://doi.org/10.1016/j.molmet.2017.10.013
  12. Castro, B. M., Prieto, M. and Silva, L. C. (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53-67. https://doi.org/10.1016/j.plipres.2014.01.004
  13. Chatterjee, S., Bedja, D., Mishra, S., Amuzie, C., Avolio, A., Kass, D. A., Berkowitz, D. and Renehan, M. (2014) Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation 129, 2403-2413. https://doi.org/10.1161/CIRCULATIONAHA.113.007559
  14. Chatterjee, S. B., Dey, S., Shi, W. Y., Thomas, K. and Hutchins, G. M. (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7, 57-65. https://doi.org/10.1093/glycob/7.1.57
  15. Chaurasia, B. and Summers, S. A. (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538-550. https://doi.org/10.1016/j.tem.2015.07.006
  16. Chaurasia, B., Tippetts, T. S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J. L., Sweeney, C. R., Pereira, R. F., Sumida, D. H., Maschek, J. A., Cox, J. E., Kaddai, V., Lancaster, G. I., Siddique, M. M., Poss, A., Pearson, M., Satapati, S., Zhou, H., McLaren, D. G., Previs, S. F., Chen, Y., Qian, Y., Petrov, A., Wu, M., Shen, X., Yao, J., Nunes, C. N., Howard, A. D., Wang, L., Erion, M. D., Rutter, J., Holland, W. L., Kelley, D. E. and Summers, S. A. (2019) Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386-392. https://doi.org/10.1126/science.aav3722
  17. Chavez, J. A., Holland, W. L., Bar, J., Sandhoff, K. and Summers, S. A. (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 280, 20148-20153. https://doi.org/10.1074/jbc.M412769200
  18. Chavez, J. A., Knotts, T. A., Wang, L. P., Li, G., Dobrowsky, R. T., Florant, G. L. and Summers, S. A. (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 278, 10297-10303. https://doi.org/10.1074/jbc.M212307200
  19. Chavez, J. A. and Summers, S. A. (2012) A ceramide-centric view of insulin resistance. Cell Metab. 15, 585-594. https://doi.org/10.1016/j.cmet.2012.04.002
  20. Cheng, J. M., Suoniemi, M., Kardys, I., Vihervaara, T., de Boer, S. P., Akkerhuis, K. M., Sysi-Aho, M., Ekroos, K., Garcia-Garcia, H. M., Oemrawsingh, R. M., Regar, E., Koenig, W., Serruys, P. W., van Geuns, R. J., Boersma, E. and Laaksonen, R. (2015a) Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis 243, 560-566. https://doi.org/10.1016/j.atherosclerosis.2015.10.022
  21. Cheng, L., Chen, Y. Z., Peng, Y., Yi, N., Gu, X. S., Jin, Y. and Bai, X. M. (2015b) Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 36, 5763-5771. https://doi.org/10.1007/s13277-015-3245-1
  22. de Mello, V. D., Lankinen, M., Schwab, U., Kolehmainen, M., Lehto, S., Seppanen-Laakso, T., Oresic, M., Pulkkinen, L., Uusitupa, M. and Erkkila, A. T. (2009) Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52, 2612-2615. https://doi.org/10.1007/s00125-009-1482-9
  23. Dekker, M. J., Baker, C., Naples, M., Samsoondar, J., Zhang, R., Qiu, W., Sacco, J. and Adeli, K. (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228, 98-109. https://doi.org/10.1016/j.atherosclerosis.2013.01.041
  24. Delgado, A., Casas, J., Llebaria, A., Abad, J. L. and Fabrias, G. (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim. Biophys. Acta 1758, 1957-1977. https://doi.org/10.1016/j.bbamem.2006.08.017
  25. Deutschman, D. H., Carstens, J. S., Klepper, R. L., Smith, W. S., Page, M. T., Young, T. R., Gleason, L. A., Nakajima, N. and Sabbadini, R. A. (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am. Heart J. 146, 62-68. https://doi.org/10.1016/S0002-8703(03)00118-2
  26. Devlin, C. M., Leventhal, A. R., Kuriakose, G., Schuchman, E. H., Williams, K. J. and Tabas, I. (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler. Thromb. Vasc. Biol. 28, 1723-1730. https://doi.org/10.1161/ATVBAHA.108.173344
  27. Dong, J., Liu, J., Lou, B., Li, Z., Ye, X., Wu, M. and Jiang, X. C. (2006) Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J. Lipid Res. 47, 1307-1314. https://doi.org/10.1194/jlr.M600040-JLR200
  28. Ebel, P., Imgrund, S., Vom Dorp, K., Hofmann, K., Maier, H., Drake, H., Degen, J., Dormann, P., Eckhardt, M., Franz, T. and Willecke, K. (2014) Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 461, 147-158. https://doi.org/10.1042/BJ20131242
  29. Ebel, P., Vom Dorp, K., Petrasch-Parwez, E., Zlomuzica, A., Kinugawa, K., Mariani, J., Minich, D., Ginkel, C., Welcker, J., Degen, J., Eckhardt, M., Dere, E., Dormann, P. and Willecke, K. (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J. Biol. Chem. 288, 21433-21447. https://doi.org/10.1074/jbc.M113.479907
  30. Fabbri, E., Yang, A., Simonsick, E. M., Chia, C. W., Zoli, M., Haughey, N. J., Mielke, M. M., Ferrucci, L. and Coen, P. M. (2016) Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54-96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 15, 825-831. https://doi.org/10.1111/acel.12491
  31. Fettel, J., Kuhn, B., Guillen, N. A., Surun, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnutgen, F., Meyer Zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J. and Maier, T. J. (2019) Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity. FASEB J. 33, 1711-1726. https://doi.org/10.1096/fj.201800221R
  32. Gable, K., Slife, H., Bacikova, D., Monaghan, E. and Dunn, T. M. (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275, 7597-7603. https://doi.org/10.1074/jbc.275.11.7597
  33. Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689-711. https://doi.org/10.1007/s10495-015-1109-1
  34. Garner, B., Priestman, D. A., Stocker, R., Harvey, D. J., Butters, T. D. and Platt, F. M. (2002) Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J. Lipid Res. 43, 205-214. https://doi.org/10.1016/S0022-2275(20)30162-0
  35. Gault, C. R., Obeid, L. M. and Hannun, Y. A. (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23. https://doi.org/10.1007/978-1-4419-6741-1_1
  36. Glaros, E. N., Kim, W. S., Wu, B. J., Suarna, C., Quinn, C. M., Rye, K. A., Stocker, R., Jessup, W. and Garner, B. (2007) Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73, 1340-1346. https://doi.org/10.1016/j.bcp.2006.12.023
  37. Gong, N., Wei, H., Chowdhury, S. H. and Chatterjee, S. (2004) Lactosylceramide recruits PKCalpha/epsilon and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 101, 6490-6495. https://doi.org/10.1073/pnas.0308684101
  38. Gracheva, E. V., Samovilova, N. N., Golovanova, N. K., Kashirina, S. V., Shevelev, A., Rybalkin, I., Gurskaya, T., Vlasik, T. N., Andreeva, E. R. and Prokazova, N. V. (2009) Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol. Cell. Biochem. 330, 121-129. https://doi.org/10.1007/s11010-009-0125-2
  39. Hailemariam, T. K., Huan, C., Liu, J., Li, Z., Roman, C., Kalbfeisch, M., Bui, H. H., Peake, D. A., Kuo, M. S., Cao, G., Wadgaonkar, R. and Jiang, X. C. (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler. Thromb. Vasc. Biol. 28, 1519-1526. https://doi.org/10.1161/ATVBAHA.108.168682
  40. Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S. and Spiegel, S. (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta 1758, 2016-2026. https://doi.org/10.1016/j.bbamem.2006.08.007
  41. Hammerschmidt, P., Ostkotte, D., Nolte, H., Gerl, M. J., Jais, A., Brunner, H. L., Sprenger, H. G., Awazawa, M., Nicholls, H. T., TurpinNolan, S. M., Langer, T., Kruger, M., Brugger, B. and Bruning, J. C. (2019) CerS6-derived sphingolipids interact with Mff and Promote mitochondrial fragmentation in obesity. Cell 177, 1536-1552.e23. https://doi.org/10.1016/j.cell.2019.05.008
  42. Hanada, K. (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30. https://doi.org/10.1016/S1388-1981(03)00059-3
  43. Haus, J. M., Kashyap, S. R., Kasumov, T., Zhang, R., Kelly, K. R., Defronzo, R. A. and Kirwan, J. P. (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337-343. https://doi.org/10.2337/db08-1228
  44. Havulinna, A. S., Sysi-Aho, M., Hilvo, M., Kauhanen, D., Hurme, R., Ekroos, K., Salomaa, V. and Laaksonen, R. (2016) Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424-2430. https://doi.org/10.1161/ATVBAHA.116.307497
  45. Hla, T. and Dannenberg, A. J. (2012) Sphingolipid signaling in metabolic disorders. Cell Metab. 16, 420-434. https://doi.org/10.1016/j.cmet.2012.06.017
  46. Hla, T. and Kolesnick, R. (2014) C16:0-ceramide signals insulin resistance. Cell Metab. 20, 703-705. https://doi.org/10.1016/j.cmet.2014.10.017
  47. Hojjati, M. R., Li, Z., Zhou, H., Tang, S., Huan, C., Ooi, E., Lu, S. and Jiang, X. C. (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280, 10284-10289. https://doi.org/10.1074/jbc.M412348200
  48. Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Karathanasis, S. K., Fontenot, G. K., Birnbaum, M. J. and Summers, S. A. (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167-179. https://doi.org/10.1016/j.cmet.2007.01.002
  49. Holland, W. L., Miller, R. A., Wang, Z. V., Sun, K., Barth, B. M., Bui, H. H., Davis, K. E., Bikman, B. T., Halberg, N., Rutkowski, J. M., Wade, M. R., Tenorio, V. M., Kuo, M. S., Brozinick, J. T., Zhang, B. B., Birnbaum, M. J., Summers, S. A. and Scherer, P. E. (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55-63. https://doi.org/10.1038/nm.2277
  50. Holland, W. L., Xia, J. Y., Johnson, J. A., Sun, K., Pearson, M. J., Sharma, A. X., Quittner-Strom, E., Tippetts, T. S., Gordillo, R. and Scherer, P. E. (2017) Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267-275. https://doi.org/10.1016/j.molmet.2017.01.002
  51. Hornemann, T., Richard, S., Rutti, M. F., Wei, Y. and von Eckardstein, A. (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275-37281. https://doi.org/10.1074/jbc.M608066200
  52. Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K. and Willecke, K. (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549-33560. https://doi.org/10.1074/jbc.M109.031971
  53. Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., Nickel, W., Willecke, K., Riezman, H., Grone, H. J. and Sandhoff, R. (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586-608. https://doi.org/10.1093/hmg/ddr494
  54. Jiang, X. C., Paultre, F., Pearson, T. A., Reed, R. G., Francis, C. K., Lin, M., Berglund, L. and Tall, A. R. (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20, 2614-2618. https://doi.org/10.1161/01.ATV.20.12.2614
  55. Jiao, G. Q., Yuan, Z. X., Xue, Y. S., Yang, C. J., Lu, C. B., Lu, Z. Q. and Xiao, M. D. (2007) A prospective evaluation of apolipoprotein M gene T-778C polymorphism in relation to coronary artery disease in Han Chinese. Clin. Biochem. 40, 1108-1112. https://doi.org/10.1016/j.clinbiochem.2007.04.023
  56. Jin, J., Zhang, X., Lu, Z., Perry, D. M., Li, Y., Russo, S. B., Cowart, L. A., Hannun, Y. A. and Huang, Y. (2013) Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am. J. Physiol. Endocrinol. Metab. 305, E853-E867.
  57. Johansson, H., Gandini, S., Guerrieri-Gonzaga, A., Iodice, S., Ruscica, M., Bonanni, B., Gulisano, M., Magni, P., Formelli, F. and Decensi, A. (2008) Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer. Cancer. Res. 68, 9512-9518. https://doi.org/10.1158/0008-5472.CAN-08-0553
  58. Kasumov, T., Li, L., Li, M., Gulshan, K., Kirwan, J. P., Liu, X., Previs, S., Willard, B., Smith, J. D. and McCullough, A. (2015) Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910. https://doi.org/10.1371/journal.pone.0126910
  59. Keul, P., Lucke, S., von Wnuck Lipinski, K., Bode, C., Graler, M., Heusch, G. and Levkau, B. (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ. Res. 108, 314-323. https://doi.org/10.1161/CIRCRESAHA.110.235028
  60. Keul, P., Tolle, M., Lucke, S., von Wnuck Lipinski, K., Heusch, G., Schuchardt, M., van der Giet, M. and Levkau, B. (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 607-613. https://doi.org/10.1161/01.ATV.0000254679.42583.88
  61. Knapp, M., Baranowski, M., Czarnowski, D., Lisowska, A., Zabielski, P., Gorski, J. and Musial, W. (2009) Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med. Sci. Monit. 15, CR490-CR493.
  62. Knapp, M., Lisowska, A., Zabielski, P., Musial, W. and Baranowski, M. (2013) Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 106, 53-61. https://doi.org/10.1016/j.prostaglandins.2013.10.001
  63. Koh, I. U., Jun, H. S., Choi, J. S., Lim, J. H., Kim, W. H., Yoon, J. B. and Song, J. (2012) Fenretinide ameliorates insulin resistance and fatty liver in obese mice. Biol. Pharm. Bull. 35, 369-375. https://doi.org/10.1248/bpb.35.369
  64. Kolesnick, R. (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3-8. https://doi.org/10.1172/JCI16127
  65. Kraveka, J. M., Li, L., Szulc, Z. M., Bielawski, J., Ogretmen, B., Hannun, Y. A., Obeid, L. M. and Bielawska, A. (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 282, 16718-16728. https://doi.org/10.1074/jbc.M700647200
  66. Kurano, M. and Yatomi, Y. (2018) Sphingosine 1-phosphate and atherosclerosis. J. Atheroscler. Thromb. 25, 16-26. https://doi.org/10.5551/jat.RV17010
  67. Kurek, K., Piotrowska, D. M., Wiesiolek-Kurek, P., Lukaszuk, B., Chabowski, A., Gorski, J. and Zendzian-Piotrowska, M. (2014) Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074-1083. https://doi.org/10.1111/liv.12331
  68. Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., Suoniemi, M., Hurme, R., Marz, W., Scharnagl, H., Stojakovic, T., Vlachopoulou, E., Lokki, M. L., Nieminen, M. S., Klingenberg, R., Matter, C. M., Hornemann, T., Juni, P., Rodondi, N., Raber, L., Windecker, S., Gencer, B., Pedersen, E. R., Tell, G. S., Nygard, O., Mach, F., Sinisalo, J. and Luscher, T. F. (2016) Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967-1976. https://doi.org/10.1093/eurheartj/ehw148
  69. Lallemand, T., Rouahi, M., Swiader, A., Grazide, M. H., Geoffre, N., Alayrac, P., Recazens, E., Coste, A., Salvayre, R., Negre-Salvayre, A. and Auge, N. (2018) nSMase2 (type 2-neutral sphingomyelinase) deficiency or inhibition by GW4869 reduces inflammation and atherosclerosis in Apoe(-/-) mice. Arterioscler. Thromb. Vasc. Biol. 38, 1479-1492. https://doi.org/10.1161/ATVBAHA.118.311208
  70. Lemaitre, R. N., Yu, C., Hoofnagle, A., Hari, N., Jensen, P. N., Fretts, A. M., Umans, J. G., Howard, B. V., Sitlani, C. M., Siscovick, D. S., King, I. B., Sotoodehnia, N. and McKnight, B. (2018) Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663-1672. https://doi.org/10.2337/db17-1449
  71. Li, M., Markham, J. E. and Wang, X. (2014) Overexpression of patatin-related phospholipase AIIIbeta altered the content and composition of sphingolipids in Arabidopsis. Front. Plant Sci. 5, 553.
  72. Li, Z., Fan, Y., Liu, J., Li, Y., Huan, C., Bui, H. H., Kuo, M. S., Park, T. S., Cao, G. and Jiang, X. C. (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1577-1584. https://doi.org/10.1161/ATVBAHA.112.251538
  73. Liu, J., Huan, C., Chakraborty, M., Zhang, H., Lu, D., Kuo, M. S., Cao, G. and Jiang, X. C. (2009) Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105, 295-303. https://doi.org/10.1161/CIRCRESAHA.109.194613
  74. Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., Rosenfeldt, H. M., Nava, V. E., Chae, S. S., Lee, M. J., Liu, C. H., Hla, T., Spiegel, S. and Proia, R. L. (2000) Edg-1, the G proteincoupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951-961. https://doi.org/10.1172/JCI10905
  75. Lopez, X., Goldfine, A. B., Holland, W. L., Gordillo, R. and Scherer, P. E. (2013) Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J. Pediatr. Endocrinol. Metab. 26, 995-998. https://doi.org/10.1515/jpem-2012-0407
  76. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., Bennett, D., Bhalla, K., Bikbov, B., Bin Abdulhak, A., Birbeck, G., Blyth, F., Bolliger, I., Boufous, S., Bucello, C., Burch, M., Burney, P., Carapetis, J., Chen, H., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, K. E., Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., de Vaccaro, K. C., Couser, W., Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., Dahodwala, N., De Leo, D., Degenhardt, L., Delossantos, A., Denenberg, J., Des Jarlais, D. C., Dharmaratne, S. D., Dorsey, E. R., Driscoll, T., Duber, H., Ebel, B., Erwin, P. J., Espindola, P., Ezzati, M., Feigin, V., Flaxman, A. D., Forouzanfar, M. H., Fowkes, F. G., Franklin, R., Fransen, M., Freeman, M. K., Gabriel, S. E., Gakidou, E., Gaspari, F., Gillum, R. F., Gonzalez-Medina, D., Halasa, Y. A., Haring, D., Harrison, J. E., Havmoeller, R., Hay, R. J., Hoen, B., Hotez, P. J., Hoy, D., Jacobsen, K. H., James, S. L., Jasrasaria, R., Jayaraman, S., Johns, N., Karthikeyan, G., Kassebaum, N., Keren, A., Khoo, J. P., Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Lipnick, M., Lipshultz, S. E., Ohno, S. L., Mabweijano, J., MacIntyre, M. F., Mallinger, L., March, L., Marks, G. B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. M., McAnulty, J. H., McDermott, M. M., McGrath, J., Mensah, G. A., Merriman, T. R., Michaud, C., Miller, M., Miller, T. R., Mock, C., Mocumbi, A. O., Mokdad, A. A., Moran, A., Mulholland, K., Nair, M. N., Naldi, L., Narayan, K. M., Nasseri, K., Norman, P., O'Donnell, M., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Pahari, B., Pandian, J. D., Rivero, A. P., Padilla, R. P., Perez-Ruiz, F., Perico, N., Phillips, D., Pierce, K., Pope, C. A., 3rd, Porrini, E., Pourmalek, F., Raju, M., Ranganathan, D., Rehm, J. T., Rein, D. B., Remuzzi, G., Rivara, F. P., Roberts, T., De Leon, F. R., Rosenfeld, L. C., Rushton, L., Sacco, R. L., Salomon, J. A., Sampson, U., Sanman, E., Schwebel, D. C., Segui-Gomez, M., Shepard, D. S., Singh, D., Singleton, J., Sliwa, K., Smith, E., Steer, A., Taylor, J. A., Thomas, B., Tleyjeh, I. M., Towbin, J. A., Truelsen, T., Undurraga, E. A., Venketasubramanian, N., Vijayakumar, L., Vos, T., Wagner, G. R., Wang, M., Wang, W., Watt, K., Weinstock, M. A., Weintraub, R., Wilkinson, J. D., Woolf, A. D., Wulf, S., Yeh, P. H., Yip, P., Zabetian, A., Zheng, Z. J., Lopez, A. D., Murray, C. J., AlMazroa, M. A. and Memish, Z. A. (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095-2128. https://doi.org/10.1016/S0140-6736(12)61728-0
  77. Maceyka, M. and Spiegel, S. (2014) Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67. https://doi.org/10.1038/nature13475
  78. Manicke, N. E., Nefliu, M., Wu, C., Woods, J. W., Reiser, V., Hendrickson, R. C. and Cooks, R. G. (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem. 81, 8702-8707. https://doi.org/10.1021/ac901739s
  79. Marathe, S., Kuriakose, G., Williams, K. J. and Tabas, I. (1999) Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 19, 2648-2658. https://doi.org/10.1161/01.ATV.19.11.2648
  80. Maula, T., Al Sazzad, M. A. and Slotte, J. P. (2015) Influence of hydroxylation, chain length, and chain unsaturation on bilayer properties of ceramides. Biophys. J. 109, 1639-1651. https://doi.org/10.1016/j.bpj.2015.08.040
  81. Meeusen, J. W., Donato, L. J., Bryant, S. C., Baudhuin, L. M., Berger, P. B. and Jaffe, A. S. (2018) Plasma ceramides. Arterioscler. Thromb. Vasc. Biol. 38, 1933-1939. https://doi.org/10.1161/atvbaha.118.311199
  82. Meikle, P. J., Wong, G., Tsorotes, D., Barlow, C. K., Weir, J. M., Christopher, M. J., MacIntosh, G. L., Goudey, B., Stern, L., Kowalczyk, A., Haviv, I., White, A. J., Dart, A. M., Duffy, S. J., Jennings, G. L. and Kingwell, B. A. (2011) Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31, 2723-2732. https://doi.org/10.1161/ATVBAHA.111.234096
  83. Merrill, A. H., Jr. (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843-25846. https://doi.org/10.1074/jbc.R200009200
  84. Michaud, J., Im, D. S. and Hla, T. (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475-1483. https://doi.org/10.4049/jimmunol.0901586
  85. Mody, N. and McIlroy, G. D. (2014) The mechanisms of Fenretinidemediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem. Pharmacol. 91, 277-286. https://doi.org/10.1016/j.bcp.2014.07.012
  86. Mukhin, D. N., Chao, F. F. and Kruth, H. S. (1995) Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15, 1607-1615. https://doi.org/10.1161/01.ATV.15.10.1607
  87. Munoz-Olaya, J. M., Matabosch, X., Bedia, C., Egido-Gabas, M., Casas, J., Llebaria, A., Delgado, A. and Fabrias, G. (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. ChemMedChem 3, 946-953. https://doi.org/10.1002/cmdc.200700325
  88. Murray, C. J. and Lopez, A. D. (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269-1276. https://doi.org/10.1016/S0140-6736(96)07493-4
  89. Neeland, I. J., Singh, S., McGuire, D. K., Vega, G. L., Roddy, T., Reilly, D. F., Castro-Perez, J., Kozlitina, J. and Scherer, P. E. (2018) Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia 61, 2570-2579. https://doi.org/10.1007/s00125-018-4720-1
  90. Nicholls, M. (2017) Plasma ceramides and cardiac risk. Eur. Heart J. 38, 1359-1360. https://doi.org/10.1093/eurheartj/ehx205
  91. Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y. and Suzuki, A. (2004) DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687-695. https://doi.org/10.1042/BJ20031425
  92. Pan, W., Yu, J., Shi, R., Yan, L., Yang, T., Li, Y., Zhang, Z., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2014) Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron. Artery Dis. 25, 230-235. https://doi.org/10.1097/mca.0000000000000079
  93. Park, J. W., Park, W. J. and Futerman, A. H. (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681. https://doi.org/10.1016/j.bbalip.2013.08.019
  94. Park, T. S., Panek, R. L., Mueller, S. B., Hanselman, J. C., Rosebury, W. S., Robertson, A. W., Kindt, E. K., Homan, R., Karathanasis, S. K. and Rekhter, M. D. (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110, 3465-3471. https://doi.org/10.1161/01.CIR.0000148370.60535.22
  95. Park, T. S., Panek, R. L., Rekhter, M. D., Mueller, S. B., Rosebury, W. S., Robertson, A., Hanselman, J. C., Kindt, E., Homan, R. and Karathanasis, S. K. (2006) Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189, 264-272. https://doi.org/10.1016/j.atherosclerosis.2005.12.029
  96. Park, T. S., Rosebury, W., Kindt, E. K., Kowala, M. C. and Panek, R. L. (2008) Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoEdeficient mice. Pharmacol. Res. 58, 45-51. https://doi.org/10.1016/j.phrs.2008.06.005
  97. Peterson, L. R., Xanthakis, V., Duncan, M. S., Gross, S., Friedrich, N., Volzke, H., Felix, S. B., Jiang, H., Sidhu, R., Nauck, M., Jiang, X., Ory, D. S., Dorr, M., Vasan, R. S. and Schaffer, J. E. (2018) Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7, e007931. https://doi.org/10.1161/JAHA.117.007931
  98. Pewzner-Jung, Y., Ben-Dor, S. and Futerman, A. H. (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001-25005. https://doi.org/10.1074/jbc.R600010200
  99. Polzin, A., Piayda, K., Keul, P., Dannenberg, L., Mohring, A., Graler, M., Zeus, T., Kelm, M. and Levkau, B. (2017) Plasma sphingosine1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. J. Mol. Cell. Cardiol. 110, 35-37. https://doi.org/10.1016/j.yjmcc.2017.07.004
  100. Portman, O. W. and Alexander, M. (1970) Metabolism of sphingolipids by normal and atherosclerotic aorta of squirrel monkeys. J. Lipid Res. 11, 23-30. https://doi.org/10.1016/S0022-2275(20)43012-3
  101. Poti, F., Ceglarek, U., Burkhardt, R., Simoni, M. and Nofer, J. R. (2015) SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet. Atherosclerosis 240, 212-215. https://doi.org/10.1016/j.atherosclerosis.2015.03.020
  102. Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. and Nofer, J. R. (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice. Arterioscler. Thromb. Vasc. Biol. 33, 1505-1512. https://doi.org/10.1161/ATVBAHA.113.301347
  103. Preitner, F., Mody, N., Graham, T. E., Peroni, O. D. and Kahn, B. B. (2009) Long-term Fenretinide treatment prevents high-fat dietinduced obesity, insulin resistance, and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 297, E1420-E1429. https://doi.org/10.1152/ajpendo.00362.2009
  104. Prokazova, N. V., Mikhailenko, I. A. and Bergelson, L. D. (1991) Ganglioside GM3 stimulates the uptake and processing of low density lipoproteins by macrophages. Biochem. Biophys. Res. Commun. 177, 582-587. https://doi.org/10.1016/0006-291X(91)92023-D
  105. Reibe-Pal, S. and Febbraio, M. A. (2017) Adiponectin serenades ceramidase to improve metabolism. Mol. Metab. 6, 233-235. https://doi.org/10.1016/j.molmet.2017.01.011
  106. Rodriguez-Cuenca, S., Barbarroja, N. and Vidal-Puig, A. (2015) Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50. https://doi.org/10.1016/j.bbalip.2014.09.021
  107. Sasset, L., Zhang, Y., Dunn, T. M. and Di Lorenzo, A. (2016) Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol. Metab. 27, 807-819. https://doi.org/10.1016/j.tem.2016.07.005
  108. Sattler, K., Lehmann, I., Graler, M., Brocker-Preuss, M., Erbel, R., Heusch, G. and Levkau, B. (2014) HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell. Physiol. Biochem. 34, 172-184. https://doi.org/10.1159/000362993
  109. Sattler, K. J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M. H., Brocker-Preuss, M., Budde, T., Erbel, R., Heusch, G. and Levkau, B. (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol. 105, 821-832. https://doi.org/10.1007/s00395-010-0112-5
  110. Schissel, S. L., Tweedie-Hardman, J., Rapp, J. H., Graham, G., Williams, K. J. and Tabas, I. (1996) Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98, 1455-1464. https://doi.org/10.1172/JCI118934
  111. Sigruener, A., Kleber, M. E., Heimerl, S., Liebisch, G., Schmitz, G. and Maerz, W. (2014) Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS ONE 9, e85724. https://doi.org/10.1371/journal.pone.0085724
  112. Skoura, A., Michaud, J., Im, D. S., Thangada, S., Xiong, Y., Smith, J. D. and Hla, T. (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81-85. https://doi.org/10.1161/ATVBAHA.110.213496
  113. Smith, E. B. (1960) Intimal and medial lipids in human aortas. Lancet 1, 799-803. https://doi.org/10.1016/S0140-6736(60)90680-2
  114. Summers, S. A. (2018) Could ceramides become the new cholesterol? Cell Metab. 27, 276-280. https://doi.org/10.1016/j.cmet.2017.12.003
  115. Takahashi, C., Kurano, M., Nishikawa, M., Kano, K., Dohi, T., Miyauchi, K., Daida, H., Shimizu, T., Aoki, J. and Yatomi, Y. (2017) Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. J. Atheroscler. Thromb. 24, 954-969. https://doi.org/10.5551/jat.37663
  116. Tarasov, K., Ekroos, K., Suoniemi, M., Kauhanen, D., Sylvanne, T., Hurme, R., Gouni-Berthold, I., Berthold, H. K., Kleber, M. E., Laaksonen, R. and Marz, W. (2014) Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 99, E45-E52. https://doi.org/10.1210/jc.2013-2559
  117. Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann, J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hildebrand, R., Schulz, R., Heusch, G., Haude, M., von Wnuck Lipinski, K., Herzog, C., Schmitz, M., Erbel, R., Chun, J. and Levkau, B. (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114, 1403-1409. https://doi.org/10.1161/CIRCULATIONAHA.105.607135
  118. Turpin, S. M., Nicholls, H. T., Willmes, D. M., Mourier, A., Brodesser, S., Wunderlich, C. M., Mauer, J., Xu, E., Hammerschmidt, P., Bronneke, H. S., Trifunovic, A., LoSasso, G., Wunderlich, F. T., Kornfeld, J. W., Bluher, M., Kronke, M. and Bruning, J. C. (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678-686. https://doi.org/10.1016/j.cmet.2014.08.002
  119. Walters, M. J. and Wrenn, S. P. (2008) Effect of sphingomyelinase-mediated generation of ceramide on aggregation of low-density lipoprotein. Langmuir 24, 9642-9647. https://doi.org/10.1021/la800714w
  120. Wang, D. D., Toledo, E., Hruby, A., Rosner, B. A., Willett, W. C., Sun, Q., Razquin, C., Zheng, Y., Ruiz-Canela, M., Guasch-Ferre, M., Corella, D., Gomez-Gracia, E., Fiol, M., Estruch, R., Ros, E., Lapetra, J., Fito, M., Aros, F., Serra-Majem, L., Lee, C. H., Clish, C. B., Liang, L., Salas-Salvado, J., Martinez-Gonzalez, M. A. and Hu, F. B. (2017) Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED Trial (Prevencion con Dieta Mediterranea). Circulation 135, 2028-2040. https://doi.org/10.1161/CIRCULATIONAHA.116.024261
  121. Wang, G., Kim, R. Y., Imhof, I., Honbo, N., Luk, F. S., Li, K., Kumar, N., Zhu, B. Q., Eberle, D., Ching, D., Karliner, J. S. and Raffai, R. L. (2014) The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J. Cardiovasc. Pharmacol. 63, 132-143. https://doi.org/10.1097/fjc.0000000000000031
  122. Wang, X., Dong, J., Zhao, Y., Li, Y. and Wu, M. (2011) Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice. Lipids Health Dis. 10, 7. https://doi.org/10.1186/1476-511X-10-7
  123. Wigger, L., Cruciani-Guglielmacci, C., Nicolas, A., Denom, J., Fernandez, N., Fumeron, F., Marques-Vidal, P., Ktorza, A., Kramer, W., Schulte, A., Le Stunff, H., Liechti, R., Xenarios, I., Vollenweider, P., Waeber, G., Uphues, I., Roussel, R., Magnan, C., Ibberson, M. and Thorens, B. (2017) Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18, 2269-2279. https://doi.org/10.1016/j.celrep.2017.02.019
  124. Wolfrum, C., Poy, M. N. and Stoffel, M. (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418-422. https://doi.org/10.1038/nm1211
  125. Xia, J. Y., Holland, W. L., Kusminski, C. M., Sun, K., Sharma, A. X., Pearson, M. J., Sifuentes, A. J., McDonald, J. G., Gordillo, R. and Scherer, P. E. (2015) Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266-278. https://doi.org/10.1016/j.cmet.2015.06.007
  126. Xu, W. W., Zhang, Y., Tang, Y. B., Xu, Y. L., Zhu, H. Z., Ferro, A., Ji, Y., Chen, Q. and Fan, L. M. (2008) A genetic variant of apolipoprotein M increases susceptibility to coronary artery disease in a Chinese population. Clin. Exp. Pharmacol. Physiol. 35, 546-551. https://doi.org/10.1111/j.1440-1681.2007.04822.x
  127. Yu, J., Pan, W., Shi, R., Yang, T., Li, Y., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2015) Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can. J. Cardiol. 31, 357-363. https://doi.org/10.1016/j.cjca.2014.12.007
  128. Zabielski, P., Daniluk, J., Hady, H. R., Markowski, A. R., Imierska, M., Gorski, J. and Blachnio-Zabielska, A. U. (2019) The effect of highfat diet and inhibition of ceramide production on insulin action in liver. J. Cell. Physiol. 234, 1851-1861. https://doi.org/10.1002/jcp.27058
  129. Zhang, Q. J., Holland, W. L., Wilson, L., Tanner, J. M., Kearns, D., Cahoon, J. M., Pettey, D., Losee, J., Duncan, B., Gale, D., Kowalski, C. A., Deeter, N., Nichols, A., Deesing, M., Arrant, C., Ruan, T., Boehme, C., McCamey, D. R., Rou, J., Ambal, K., Narra, K. K., Summers, S. A., Abel, E. D. and Symons, J. D. (2012) Ceramide mediates vascular dysfunction in diet-induced obesity by PP2Amediated dephosphorylation of the eNOS-Akt complex. Diabetes 61, 1848-1859. https://doi.org/10.2337/db11-1399
  130. Zhao, L., Spassieva, S. D., Jucius, T. J., Shultz, L. D., Shick, H. E., Macklin, W. B., Hannun, Y. A., Obeid, L. M. and Ackerman, S. L. (2011) A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 7, e1002063. https://doi.org/10.1371/journal.pgen.1002063
  131. Zhao, M., Pan, W., Shi, R. Z., Bai, Y. P., You, B. Y., Zhang, K., Fu, Q. M., Schuchman, E. H., He, X. X. and Zhang, G. G. (2016) Acid sphingomyelinase mediates oxidized-LDL induced apoptosis in macrophage via endoplasmic reticulum stress. J. Atheroscler. Thromb. 23, 1111-1125. https://doi.org/10.5551/jat.32383
  132. Zhao, Y. R., Dong, J. B., Li, Y. and Wu, M. P. (2012) Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 90, 867-873. https://doi.org/10.1016/j.lfs.2012.04.003
  133. Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M. and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864-1884. https://doi.org/10.1016/j.bbamem.2006.08.009
  134. Zilversmit, D. B., Mc, C. E., Jordan, P. H., Henly, W. S. and Ackerman, R. F. (1961) The synthesis of phospholipids in human atheromatous lesions. Circulation 23, 370-375. https://doi.org/10.1161/01.CIR.23.3.370

Cited by

  1. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets vol.11, pp.11, 2021, https://doi.org/10.3390/diagnostics11112053