DOI QR코드

DOI QR Code

The theranostic roles of extracellular vesicles in pregnancy disorders

  • Saadeldin, Islam M. (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Tanga, Bereket Molla (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Bang, Seonggyu (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Fang, Xun (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Yoon, Ki-Young (Department of Companion Animal, Shingu College) ;
  • Lee, Sanghoon (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University) ;
  • Cho, Jongki (Lab. of Theriogenology, College of Veterinary Medicine, Chungnam National University)
  • Received : 2021.11.10
  • Accepted : 2021.12.01
  • Published : 2022.03.31

Abstract

Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-the-art of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

Keywords

Acknowledgement

We thank the National Research Foundation of Korea and the Brain Pool program for supporting our project.

References

  1. Abdelaal NE, Tanga BM, Abdelgawad M, Allam S, Fathi M, Saadeldin IM, Bang S, Cho J. 2021. Cellular therapy via spermatogonial stem cells for treating impaired spermatogenesis, non-obstructive azoospermia. Cells 10:1779. https://doi.org/10.3390/cells10071779
  2. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S. 2007. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179:1969-1978. https://doi.org/10.4049/jimmunol.179.3.1969
  3. Albrecht C, Caniggia I, Clifton V, Gohner C, Harris L, Hemmings D, Jawerbaum A, Johnstone E, Jones H, Keelan J, Lewis R, Mitchell M, Murthi P, Powell T, Saffery R, Smith R, Vaillancourt C, Wadsack C, Salomon C. 2016. IFPA meeting 2015 workshop report III: nanomedicine applications and exosome biology, xenobiotics and endocrine disruptors and pregnancy, and lipid. Placenta 48 Suppl 1:S12-S16. https://doi.org/10.1016/j.placenta.2016.01.003
  4. Alharbi MG, Lee SH, Abdelazim AM, Saadeldin IM, Abomughaid MM. 2021. Role of extracellular vesicles in compromising cellular resilience to environmental stressors. Biomed Res. Int. 2021:9912281.
  5. Ali MA, Islam MF, Rahman SML, Zohara BF. 2020. Pregnancy diagnosis in goat by using vaginal cytology and transabdominal ultrasonography. J. Anim. Reprod. Biotechnol. 35:338-346. https://doi.org/10.12750/JARB.35.4.338
  6. Arrighetti N, Corbo C, Evangelopoulos M, Pasto A, Zuco V, Tasciotti E. 2019. Exosome-like nanovectors for drug delivery in cancer. Curr. Med. Chem. 26:6132-6148. https://doi.org/10.2174/0929867325666180831150259
  7. Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS. 2008. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J. Reprod. Immunol. 79:12-17. https://doi.org/10.1016/j.jri.2008.06.001
  8. Beards F, Jones LE, Charnock J, Forbes K, Harris LK. 2017. Placental homing peptide-microRNA inhibitor conjugates for targeted enhancement of intrinsic placental growth signaling. Theranostics 7:2940-2955. https://doi.org/10.7150/thno.18845
  9. Beretti F, Zavatti M, Casciaro F, Comitini G, Franchi F, Barbieri V, La Sala GB, Maraldi T. 2018. Amniotic fluid stem cell exosomes: therapeutic perspective. Biofactors 44:158-167. https://doi.org/10.1002/biof.1407
  10. Betteridge KJ. 2003. A history of farm animal embryo transfer and some associated techniques. Anim. Reprod. Sci. 79:203-244. https://doi.org/10.1016/S0378-4320(03)00166-0
  11. Biro O, Fothi A, Alasztics B, Nagy B, Orban TI, Rigo J Jr. 2019. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene 692:138-144. https://doi.org/10.1016/j.gene.2019.01.012
  12. Cho J, Uh K, Ryu J, Fang X, Bang S, Lee K. 2020. Development of PCR based approach to detect potential mosaicism in porcine embryos. J. Anim. Reprod. Biotechnol. 35:323-328. https://doi.org/10.12750/JARB.35.4.323
  13. Colombo M, Raposo G, Thery C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
  14. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, Buzas EI, Lotvall J. 2013. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2:20677. https://doi.org/10.3402/jev.v2i0.20677
  15. Cuffe JSM, Holland O, Salomon C, Rice GE, Perkins AV. 2017. Review: placental derived biomarkers of pregnancy disorders. Placenta 54:104-110. https://doi.org/10.1016/j.placenta.2017.01.119
  16. De Bem THC, da Silveira JC, Sampaio RV, Sangalli JR, Oliveira MLF, Ferreira RM, Silva LA, Perecin F, King WA, Meirelles FV, Ramos ES. 2017. Low levels of exosomal-miRNAs in maternal blood are associated with early pregnancy loss in cloned cattle. Sci. Rep. 7:14319. https://doi.org/10.1038/s41598-017-14616-1
  17. Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH, de Vrijer B. 2018. Altered maternal and placental lipid metabolism and fetal fat development in obesity: current knowledge and advances in non-invasive assessment. Placenta 69:118-124. https://doi.org/10.1016/j.placenta.2018.05.011
  18. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G. 2007. Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440-2448.
  19. Dixon CL, Sheller-Miller S, Saade GR, Fortunato SJ, Lai A, Palma C, Guanzon D, Salomon C, Menon R. 2018. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology 159:2229-2240. https://doi.org/10.1210/en.2018-00073
  20. Du W, Zhang K, Zhang S, Wang R, Nie Y, Tao H, Han Z, Liang L, Wang D, Liu J, Liu N, Han Z, Kong D, Zhao Q, Li Z. 2017. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 133:70-81. https://doi.org/10.1016/j.biomaterials.2017.04.030
  21. Ebert B and Rai AJ. 2019. Isolation and characterization of amniotic fluid-derived extracellular vesicles for biomarker discovery. Methods Mol. Biol. 1885:287-294. https://doi.org/10.1007/978-1-4939-8889-1_19
  22. Elfeky O, Longo S, Lai A, Rice GE, Salomon C. 2017. Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta 50:60-69. https://doi.org/10.1016/j.placenta.2016.12.020
  23. Ermini L, Ausman J, Melland-Smith M, Yeganeh B, Rolfo A, Litvack ML, Todros T, Letarte M, Post M, Caniggia I. 2017. A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci. Rep. 7:12172. https://doi.org/10.1038/s41598-017-12491-4
  24. Fallen S, Baxter D, Wu X, Kim TK, Shynlova O, Lee MY, Scherler K, Lye S, Hood L, Wang K. 2018. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell. Mol. Med. 22:2760-2773. https://doi.org/10.1111/jcmm.13570
  25. Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Lee S, Cho J. 2022. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos. Mol. Reprod. Dev. 89:54-65. https://doi.org/10.1002/mrd.23550
  26. Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, Vigano P. 2019. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin. Exp. Immunol. 198:15-23. https://doi.org/10.1111/cei.13304
  27. Gilani SI, Weissgerber TL, Garovic VD, Jayachandran M. 2016. Preeclampsia and extracellular vesicles. Curr. Hypertens. Rep. 18:68. https://doi.org/10.1007/s11906-016-0678-x
  28. Gill M, Motta-Mejia C, Kandzija N, Cooke W, Zhang W, Cerdeira AS, Bastie C, Redman C, Vatish M. 2019. Placental syncytiotrophoblast-derived extracellular vesicles carry active NEP (neprilysin) and are increased in preeclampsia. Hypertension 73:1112-1119. https://doi.org/10.1161/hypertensionaha.119.12707
  29. Gohner C, Plosch T, Faas MM. 2017. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia. Placenta 60 Suppl 1:S41-S51. https://doi.org/10.1016/j.placenta.2017.06.004
  30. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. 2016. Human endometrial exosomes contain hormonespecific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol. Reprod. 94:38.
  31. Hahn S, Giaglis S, Buser A, Hoesli I, Lapaire O, Hasler P. 2014. Cell-free nucleic acids in (maternal) blood: any relevance to (reproductive) immunologists? J. Reprod, Immunol. 104-105:26-31. https://doi.org/10.1016/j.jri.2014.03.007
  32. Hashem NM and Gonzalez-Bulnes A. 2020. State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals (Basel) 10:840. https://doi.org/10.3390/ani10050840
  33. Hayder H, Fu G, Nadeem L, O'Brien JA, Lye SJ, Peng C. 2021. Overexpression of miR-210-3p impairs extravillous trophoblast functions associated with uterine spiral artery remodeling. Int. J. Mol. Sci. 22:3961. https://doi.org/10.3390/ijms22083961
  34. Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, Forbes K, Kampmann B. 2016. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic 17:168-178. https://doi.org/10.1111/tra.12352
  35. Jankovicova J, Secova P, Michalkova K, Antalikova J. 2020. Tetraspanins, more than markers of extracellular vesicles in reproduction. Int. J. Mol. Sci. 21:7568. https://doi.org/10.3390/ijms21207568
  36. Jin J and Menon R. 2018. Placental exosomes: a proxy to understand pregnancy complications. Am. J. Reprod. Immunol. 79:e12788. https://doi.org/10.1111/aji.12788
  37. King A, Ndifon C, Lui S, Widdows K, Kotamraju VR, Agemy L, Teesalu T, Glazier JD, Cellesi F, Tirelli N, Aplin JD, Ruoslahti E, Harris LK. 2016. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci. Adv. 2:e1600349. https://doi.org/10.1126/sciadv.1600349
  38. Klohonatz KM, Cameron AD, Hergenreder JR, da Silveira JC, Belk AD, Veeramachaneni DN, Bouma GJ, Bruemmer JE. 2016. Circulating miRNAs as potential alternative cell signaling associated with maternal recognition of pregnancy in the mare. Biol. Reprod. 95:124. https://doi.org/10.1095/biolreprod.116.142935
  39. Klohonatz KM, Nulton LC, Hess AM, Bouma GJ, Bruemmer JE. 2019. The role of embryo contact and focal adhesions during maternal recognition of pregnancy. PLoS One 14:e0213322. https://doi.org/10.1371/journal.pone.0213322
  40. Konecna B, Tothova L, Repiska G. 2019. Exosomes-associated DNA-new marker in pregnancy complications? Int. J. Mol. Sci. 20:2890. https://doi.org/10.3390/ijms20122890
  41. Kowal J, Tkach M, Thery C. 2014. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29:116-125. https://doi.org/10.1016/j.ceb.2014.05.004
  42. Lim HJ, Kim HJ, Lee JH, Lim DH, Son JK, Kim ET, Jang G, Kim DH. 2021. Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle. J. Anim. Reprod. Biotechnol. 36:35-44. https://doi.org/10.12750/JARB.36.1.35
  43. Liu J, Wang SZ, Wang QL, Du JG, Wang BB. 2018. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placental exosomes in the maternal circulation across gestation. Eur. Rev. Med. Pharmacol. Sci. 22:2036-2043.
  44. Lo Cicero A, Stahl PD, Raposo G. 2015. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35:69-77. https://doi.org/10.1016/j.ceb.2015.04.013
  45. Luddi A, Zarovni N, Maltinti E, Governini L, Leo V, Cappelli V, Quintero L, Paccagnini E, Loria F, Piomboni P. 2019. Clues to non-invasive implantation window monitoring: isolation and characterisation of endometrial exosomes. Cells 8:811. https://doi.org/10.3390/cells8080811
  46. Luo R, Wang Y, Xu P, Cao G, Zhao Y, Shao X, Li YX, Chang C, Peng C, Wang YL. 2016. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A. Sci. Rep. 6:19588. https://doi.org/10.1038/srep19588
  47. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T, Takizawa T. 2009. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81:717-729. https://doi.org/10.1095/biolreprod.108.075481
  48. Mahiddine FY, Qamar AY, Kim MJ. 2020. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J. Anim. Reprod. Biotechnol. 35:268-272. https://doi.org/10.12750/JARB.35.3.268
  49. Miranda J, Paules C, Nair S, Lai A, Palma C, Scholz-Romero K, Rice GE, Gratacos E, Crispi F, Salomon C. 2018. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - liquid biopsies to monitoring fetal growth. Placenta 64:34-43. https://doi.org/10.1016/j.placenta.2018.02.006
  50. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, Rice GE, Salomon C. 2015. Placental exosomes in normal and complicated pregnancy. Am. J. Obstet. Gynecol. 213(4 Suppl):S173-S181. https://doi.org/10.1016/j.ajog.2015.07.001
  51. Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, Mahdipour M. 2019a. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors 45:293-303. https://doi.org/10.1002/biof.1497
  52. Mobarak H, Rahbarghazi R, Lolicato F, Heidarpour M, Pashazadeh F, Nouri M, Mahdipour M. 2019b. Evaluation of the association between exosomal levels and female reproductive system and fertility outcome during aging: a systematic review protocol. Syst. Rev. 8:293. https://doi.org/10.1186/s13643-019-1228-9
  53. Morgan TK. 2018. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl. Res. 201:40-48. https://doi.org/10.1016/j.trsl.2018.08.004
  54. Muralimanoharan S, Maloyan A, Mele J, Guo C, Myatt LG, Myatt L. 2012. MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta 33:816-823. https://doi.org/10.1016/j.placenta.2012.07.002
  55. Nair S, Jayabalan N, Guanzon D, Palma C, Scholz-Romero K, Elfeky O, Zuniga F, Ormazabal V, Diaz E, Rice GE, Duncombe G, Jansson T, McIntyre HD, Lappas M, Salomon C. 2018. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin. Sci. (Lond.) 132:2451-2467. https://doi.org/10.1042/CS20180487
  56. Nair S and Salomon C. 2018. Extracellular vesicles and their immunomodulatory functions in pregnancy. Semin. Immunopathol. 40:425-437. https://doi.org/10.1007/s00281-018-0680-2
  57. Nakamura K, Kusama K, Bai R, Sakurai T, Isuzugawa K, Godkin JD, Suda Y, Imakawa K. 2016. Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period. PLoS One 11:e0158278. https://doi.org/10.1371/journal.pone.0158278
  58. Nakamura K, Kusama K, Suda Y, Fujiwara H, Hori M, Imakawa K. 2020. Emerging role of extracellular vesicles in embryo-maternal communication throughout implantation processes. Int. J. Mol. Sci. 21:5523. https://doi.org/10.3390/ijms21155523
  59. Orozco AF, Jorgez CJ, Horne C, Marquez-Do DA, Chapman MR, Rodgers JR, Bischoff FZ, Lewis DE. 2008. Membrane protected apoptotic trophoblast microparticles contain nucleic acids: relevance to preeclampsia. Am. J. Pathol. 173:1595-1608. https://doi.org/10.2353/ajpath.2008.080414
  60. Orozco AF, Jorgez CJ, Ramos-Perez WD, Popek EJ, Yu X, Kozinetz CA, Bischoff FZ, Lewis DE. 2009. Placental release of distinct DNA-associated micro-particles into maternal circulation: reflective of gestation time and preeclampsia. Placenta 30:891-897. https://doi.org/10.1016/j.placenta.2009.06.012
  61. Ospina-Prieto S, Chaiwangyen W, Herrmann J, Groten T, Schleussner E, Markert UR, Morales-Prieto DM. 2016. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl. Res. 172:61-72. https://doi.org/10.1016/j.trsl.2016.02.012
  62. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. 2014. Review: placenta-specific microRNAs in exosomes - good things come in nano-packages. Placenta 35 Suppl:S69-S73. https://doi.org/10.1016/j.placenta.2013.11.002
  63. Pepe GJ and Albrecht ED. 2021. Novel technologies for target delivery of therapeutics to the placenta during pregnancy: a review. Genes (Basel) 12:1255. https://doi.org/10.3390/genes12081255
  64. Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. 2020. The challenge of using nanotherapy during pregnancy: technological aspects and biomedical implications. Placenta 100:75-80. https://doi.org/10.1016/j.placenta.2020.08.005
  65. Pillay P, Maharaj N, Moodley J, Mackraj I. 2016. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta 46:18-25. https://doi.org/10.1016/j.placenta.2016.08.078
  66. Pillay P, Moodley K, Moodley J, Mackraj I. 2017. Placenta-derived exosomes: potential biomarkers of preeclampsia. Int. J. Nanomedicine 12:8009-8023. https://doi.org/10.2147/IJN.S142732
  67. Pohler KG, Green JA, Moley LA, Gunewardena S, Hung WT, Payton RR, Hong X, Christenson LK, Geary TW, Smith MF. 2017. Circulating microRNA as candidates for early embryonic viability in cattle. Mol. Reprod. Dev. 84:731-743. https://doi.org/10.1002/mrd.22856
  68. Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. 2021. The role of stem cells and their derived extracellular vesicles in restoring female and male fertility. Cells 10:2460. https://doi.org/10.3390/cells10092460
  69. Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. 2020. Extracellular vesicle mediated crosstalk between the gametes, conceptus, and female reproductive tract. Front. Vet. Sci. 7:589117. https://doi.org/10.3389/fvets.2020.589117
  70. Raposo G and Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373-383. https://doi.org/10.1083/jcb.201211138
  71. Repiska G, Konecna B, Shelke GV, Lasser C, Vlkova BI, Minarik G. 2018. Is the DNA of placental origin packaged in exosomes isolated from plasma and serum of pregnant women? Clin. Chem. Lab. Med. 56:e150-e153. https://doi.org/10.1515/cclm-2017-0560
  72. Rice GE, Scholz-Romero K, Sweeney E, Peiris H, Kobayashi M, Duncombe G, Mitchell MD, Salomon C. 2015. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J. Clin. Endocrinol. Metab. 100:E1280-E1288. https://doi.org/10.1210/jc.2015-2270
  73. Rice TF, Donaldson B, Bouqueau M, Kampmann B, Holder B. 2018. Macrophage- but not monocyte-derived extracellular vesicles induce placental pro-inflammatory responses. Placenta 69:92-95. https://doi.org/10.1016/j.placenta.2018.07.011
  74. Roberts JM and Cooper DW. 2001. Pathogenesis and genetics of pre-eclampsia. Lancet 357:53-56. https://doi.org/10.1016/S0140-6736(00)03577-7
  75. Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE, Svensson K, Solano M, Tellez-Rojo MM, Wright RO, Baccarelli AA. 2017. Second trimester extracellular microRNAs in maternal blood and fetal growth: an exploratory study. Epigenetics 12:804-810. https://doi.org/10.1080/15592294.2017.1358345
  76. Saadeldin IM. 2021. Extracellular vesicles mediate the embryonic-maternal paracrine communication. In: Alzahrani FA, Saadeldin IM (Eds.), Role of Exosomes in Biological Communication Systems, Springer, Singapore, pp. 77-97.
  77. Saadeldin IM, Kim SJ, Choi YB, Lee BC. 2014. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell. Reprogram. 16:223-234. https://doi.org/10.1089/cell.2014.0003
  78. Saadeldin IM, Oh HJ, Lee BC. 2015. Embryonic-maternal crosstalk via exosomes: potential implications. Stem Cells Cloning 8:103-107.
  79. Saez T, de Vos P, Sobrevia L, Faas MM. 2018a. Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta 61:48-54. https://doi.org/10.1016/j.placenta.2017.11.007
  80. Saez T, Salsoso R, Leiva A, Toledo F, de Vos P, Faas M, Sobrevia L. 2018b. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 1864:499-508. https://doi.org/10.1016/j.bbadis.2017.11.010
  81. Salamonsen LA, Evans J, Nguyen HP, Edgell TA. 2016. The microenvironment of human implantation: determinant of reproductive success. Am. J. Reprod. Immunol. 75:218-225. https://doi.org/10.1111/aji.12450
  82. Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. 2013. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS One 8:e79636. https://doi.org/10.1371/journal.pone.0079636
  83. Salomon C, Nuzhat Z, Dixon CL, Menon R. 2018. Placental exosomes during gestation: liquid biopsies carrying signals for the regulation of human parturition. Curr. Pharm. Des. 24:974-982. https://doi.org/10.2174/1381612824666180125164429
  84. Salomon C and Rice GE. 2017. Role of exosomes in placental homeostasis and pregnancy disorders. Prog. Mol. Biol. Transl. Sci. 145:163-179. https://doi.org/10.1016/bs.pmbts.2016.12.006
  85. Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, Longo S, Duncombe G, Mitchell MD, Rice GE, Illanes SE. 2016. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes 65:598-609. https://doi.org/10.2337/db15-0966
  86. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell MD, Rice GE. 2014. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 9:e98667. https://doi.org/10.1371/journal.pone.0098667
  87. Sammar M, Dragovic R, Meiri H, Vatish M, Sharabi-Nov A, Sargent I, Redman C, Tannetta D. 2018. Reduced placental protein 13 (PP13) in placental derived syncytiotrophoblast extracellular vesicles in preeclampsia - a novel tool to study the impaired cargo transmission of the placenta to the maternal organs. Placenta 66:17-25. https://doi.org/10.1016/j.placenta.2018.04.013
  88. Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. 2016. Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress. PLoS One 11:e0157614. https://doi.org/10.1371/journal.pone.0157614
  89. Sheller-Miller S, Urrabaz-Garza R, Saade G, Menon R. 2017. Damage-associated molecular pattern markers HMGB1 and cell-Free fetal telomere fragments in oxidative-Stressed amnion epithelial cell-derived exosomes. J. Reprod. Immunol. 123:3-11. https://doi.org/10.1016/j.jri.2017.08.003
  90. Southcombe J, Tannetta D, Redman C, Sargent I. 2011. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One 6:e20245. https://doi.org/10.1371/journal.pone.0020245
  91. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. 2013. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J. Immunol. 191:5515-5523. https://doi.org/10.4049/jimmunol.1301885
  92. Tannetta D, Collett G, Vatish M, Redman C, Sargent I. 2017a. Syncytiotrophoblast extracellular vesicles - circulating biopsies reflecting placental health. Placenta 52:134-138. https://doi.org/10.1016/j.placenta.2016.11.008
  93. Tannetta D, Dragovic R, Alyahyaei Z, Southcombe J. 2014. Extracellular vesicles and reproduction-promotion of successful pregnancy. Cell. Mol. Immunol. 11:548-563. https://doi.org/10.1038/cmi.2014.42
  94. Tannetta D, Masliukaite I, Vatish M, Redman C, Sargent I. 2017b. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J. Reprod. Immunol. 119:98-106. https://doi.org/10.1016/j.jri.2016.08.008
  95. Tavanasefat H, Li F, Koyano K, Gourtani BK, Marty V, Mulpuri Y, Lee SH, Shin KH, Wong DTW, Xiao X, Spigelman I, Kim Y. 2020. Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS One 15:e0242276. https://doi.org/10.1371/journal.pone.0242276
  96. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrom K, El Andaloussi S, Elie-Caille C, Erdbrugger U, Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, JovanovicTalisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C, Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons K, Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Moller A, Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E, Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van KeurenJensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M, Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750
  97. Trowsdale J and Betz AG. 2006. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat. Immunol. 7:241-246. https://doi.org/10.1038/ni1317
  98. Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, Nuzhat Z, Palma C, Scholz-Romero K, Menon R, Mol BW, Rice GE, Salomon C. 2017. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - liquid biopsies for monitoring complications of pregnancy. PLoS One 12:e0174514. https://doi.org/10.1371/journal.pone.0174514
  99. Tsochandaridis M, Nasca L, Toga C, Levy-Mozziconacci A. 2015. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. Biomed. Res. Int. 2015:294954.
  100. van der Post JA, Lok CA, Boer K, Sturk A, Sargent IL, Nieuwland R. 2011. The functions of microparticles in pre-eclampsia. Semin. Thromb. Hemost. 37:146-152. https://doi.org/10.1055/s-0030-1270342
  101. van Niel G, D'Angelo G, Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19:213-228. https://doi.org/10.1038/nrm.2017.125
  102. Vargas A, Zhou S, Ethier-Chiasson M, Flipo D, Lafond J, Gilbert C, Barbeau B. 2014. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 28:3703-3719. https://doi.org/10.1096/fj.13-239053
  103. Willms E, Cabanas C, Mager I, Wood MJA, Vader P. 2018. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 9:738. https://doi.org/10.3389/fimmu.2018.00738
  104. Yang H, Ma Q, Wang Y, Tang Z. 2020. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J. Transl. Med. 18:32. https://doi.org/10.1186/s12967-020-02227-w
  105. Zhang B, Liang R, Zheng M, Cai L, Fan X. 2019a. Surface-functionalized nanoparticles as efficient tools in targeted therapy of pregnancy complications. Int. J. Mol. Sci. 20:3642. https://doi.org/10.3390/ijms20153642
  106. Zhang Y, Liu Y, Liu H, Tang WH. 2019b. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 9:19. https://doi.org/10.1186/s13578-019-0282-2