• 제목/요약/키워드: Bio-nano

검색결과 870건 처리시간 0.023초

캡슐형 내시경을 위한 체내 이동용 마이크로 로봇 (Locomotive Microrobot for Capsule Endoscopes)

  • 양성욱;박기태;이승석;나경환;김진석;최종호;박석호;박종오;윤의성
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.62-67
    • /
    • 2009
  • For diagnoses of digestive organs, capsule endoscopes are widely used and offer valuable information without patient's discomfort. A general capsule endoscope which consists of image sensing module, telemetry module and battery is able to move along gastro-intestinal tracts passively only through peristaltic waves. Thus, it is likely to have some limitations for doctor to acquire images from the desired organs and to diagnose them effectively. As solutions to these problems, a locomotive function of capsule endoscopes has being developed. We have proposed a capsule-type microrobot with synchronized multiple legs. However, the proposed capsular microrobot also has some limitations, such as low speed in advancement, inconvenience to controlling the microrobot, lack of an image module, and deficiency in a steering module. In this paper, we will describe the limitations of the locomotive microrobot and propose solutions to the drawbacks. The solutions are applied to the capsular microrobot and evaluated by in-vitro tests. Based on the experimental results, we conclude that the proposed solutions are effective and appropriate for the locomotive microrobot to explore inside intestinal tracts.

  • PDF

Fabrication of Biodegradable Disc-shaped Microparticles with Micropattern using a Hot Embossing Process with Porous Microparticles

  • Hwang, Ji-Yea;Choy, Young-Bin;Seo, Soon-Min;Park, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.147-151
    • /
    • 2011
  • This paper demonstrates the development of a method for preparing micropatterned microdiscs in order to increase contact area with cells and to change the release pattern of drugs. The microdiscs were manufactured with hot embossing, where a polyurethane master structure was pressed onto both solid and porous microparticles made of polylactic-co-glycolic acid at various temperatures to form a micropattern on the microdiscs. Flat microdiscs were formed by hot embossing of porous microparticles; the porosity allowed space for flattening of the microdiscs. Three types of micro-grooves were patterned onto the flat microdiscs using prepared micropatterned molds: (1) 10 ${\mu}M$ deep, 5 ${\mu}M$ wide, and spaced 2 ${\mu}M$ apart; (2) 10 ${\mu}M$ deep, 9 ${\mu}M$ wide, and spaced 5 ${\mu}M$ apart; and (3) 10 ${\mu}M$ deep, 50 ${\mu}M$ wide, and spaced 50 ${\mu}M$ apart. This novel microdisc preparation method using hot embossing to create micropatterns on flattened porous microparticles provides the opportunity for low-cost, rapid manufacture of microdiscs that can be used to control cell adhesion and drug delivery rates.

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Shen, Chang-Zhe;Jun, Hong-Young;Choi, Sung-Ho;Kim, Young-Man;Jung, Eun-Joo;Oh, Gi-Su;Joo, Sung-Jin;Kim, Sung-Hyun;Kim, Il-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3567-3572
    • /
    • 2010
  • Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

다공성 폴리에틸렌 막에 폴리에틸렌이민을 함침 시킨 음이온교환막의 제조 연구 (Preparation of Poly(ethylenimine) Anionic Exchnage Membrane Impregnated in Porous Polyethylene Membranes)

  • 박찬종;김일형;김성표;이학민;정성일;최호상;임지원
    • 멤브레인
    • /
    • 제21권1호
    • /
    • pp.91-97
    • /
    • 2011
  • 본 연구에서는 다공성 polyethylene (PE) 이차전지용 격리막에 poly(ethylenimine) (PEI)을 함침시켜 isophthaloyl dichloride (IPC)을 이용한 가교반응 통하여 음이온교환막을 제조하였다. 제조된 막의 특성화를 평가하기 위하여 함수율, 접촉각, FT-IR, 이온교환용량, 이온전도도 등을 측정하였다. PEI와 IPC의 반응은 아민과 -COCl기와의 반응으로 아마이드기가 생성된다. 이온교환용량의 경우 30초 반응에서 1.96 meq./g dry membrane부터 600초 반응으로 인한 1.14 meq./g dry membrane까지 감소하는 경향을 나타내었고, 이온전도도의 경우 IPC와의 가교시간이 30초일 때 $9.15{\times}10^{-2}S/cm$의 높은 값을 나타냄을 확인할 수 있었다.

폴리스티렌 나노 비드를 이용한 플라즈모닉 나노 구조체의 광학 특성 (Optical Characteristics of Plasmonic Nano-structure Using Polystyrene Nano-beads)

  • 김두근;정병규;김홍승;김태룡;김선훈;기현철;김태언;신재철;최영완
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.244-248
    • /
    • 2015
  • We proposed and demonstrated the double layered metallic nano-hole structure using polystyrene beads process to enhance the sensitivity of surface plasmon resonance (SPR). The double layered SPR structures are calculated using the finite-difference time-domain (FDTD) method for the width, thickness, and period of the metallic nano-hole structures. The thickness of the metal film and the metallic nano-hole is 30 and 20 nm in the 214 nm wide nano-hole size, respectively. The double layered SPR structures are fabricated with monolayer polystyrene beads of 420 nm wide. The sensitivities of the conventional SPR sensor and the double layered SPR sensor are obtained to 42.2 and 52.1 degree/RIU, respectively.

Fe(II)와 Cu(II)에 의해 킬레이트화 된 수수추출물 함유 바이오플라스틱의 색상 안정성 (Color Stability of the Bioplastic containing Sorghum Extract Chelated by Fe(II) and Cu(II))

  • 이가현;이성준;정상원;김현철;최진현;배도규;한상익;이세근
    • 한국염색가공학회지
    • /
    • 제27권1호
    • /
    • pp.62-69
    • /
    • 2015
  • To improve the color stability of the bioplastic containing sorghum extract, sorghum extract was chelated by a metal ion. The chelating activity was quantitatively evaluated under the various conditions. Chelation of sorghum extract by Cu(II) was determined by reaction with pyrocatechol violet, whereas Fe(II) chelation was investigated by forming complexes with ferrozine. Chelation of sorghum extract was increased rapidly with increasing concentrations of metal salt and sorghum extract. At a 0.1g/L metal salt addition level, the chelating activity of Fe(II) and Cu(II) were 66.7% and 54.2%, respectively. According to the chelation pH conditions, the sorghum extract was chelated almost 100% by Fe(II) above the pH 6.5. It was confirmed that Fe(II) was a strong chelator of sorghum extract than Cu(II). The sorghum extract chelated with metal salt exhibit higher thermal stability. The bioplastic containing chelated sorghum extract showed relatively less color change than the control.

A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films

  • Min, Hyegeun;Son, Jin Gyeong;Kim, Jeong Won;Yu, Hyunung;Lee, Tae Geol;Moon, Dae Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.793-797
    • /
    • 2014
  • To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound ($C_{58}H_{86}O_8N_8S_2Ru$), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun;Pei, Yi-Rong;Piao, Huiyan;Vinu, Ajayan;Choy, Jin-Ho
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.417-428
    • /
    • 2016
  • In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.