DOI QR코드

DOI QR Code

Optical Characteristics of Plasmonic Nano-structure Using Polystyrene Nano-beads

폴리스티렌 나노 비드를 이용한 플라즈모닉 나노 구조체의 광학 특성

  • Kim, Doo Gun (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Jung, Byung Gue (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Kim, Hong-Seung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Tae-Ryong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Seon-Hoon (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Ki, Hyun-Chul (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Kim, Tae-Un (Korea Photonics Technology Institute, Photonic-Bio Research Center) ;
  • Shin, Jae Cheol (Department of Physics, Yeungnam University) ;
  • Choi, Young-Wan (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김두근 (한국광기술원 광바이오연구센터) ;
  • 정병규 (한국광기술원 광바이오연구센터) ;
  • 김홍승 (중앙대학교 전자전기공학부) ;
  • 김태룡 (중앙대학교 전자전기공학부) ;
  • 김선훈 (한국광기술원 광바이오연구센터) ;
  • 기현철 (한국광기술원 광바이오연구센터) ;
  • 김태언 (한국광기술원 광바이오연구센터) ;
  • 신재철 (영남대학교 물리과) ;
  • 최영완 (중앙대학교 전자전기공학부)
  • Received : 2015.03.16
  • Accepted : 2015.03.24
  • Published : 2015.04.01

Abstract

We proposed and demonstrated the double layered metallic nano-hole structure using polystyrene beads process to enhance the sensitivity of surface plasmon resonance (SPR). The double layered SPR structures are calculated using the finite-difference time-domain (FDTD) method for the width, thickness, and period of the metallic nano-hole structures. The thickness of the metal film and the metallic nano-hole is 30 and 20 nm in the 214 nm wide nano-hole size, respectively. The double layered SPR structures are fabricated with monolayer polystyrene beads of 420 nm wide. The sensitivities of the conventional SPR sensor and the double layered SPR sensor are obtained to 42.2 and 52.1 degree/RIU, respectively.

Keywords

References

  1. J. Homola, S. S. Yee, and G. Gauglitz, Sensors and Actuators B-Chemical, 54, 3 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  2. B. Liedberg, I. Lundstrom, and E. Stenberg, Sensors and Actuators B, 11, 63 (1993). https://doi.org/10.1016/0925-4005(93)85239-7
  3. U. Schroter and D. Heitmann, Phys. Rev. B, 60, 4992 (1999). https://doi.org/10.1103/PhysRevB.60.4992
  4. M. Masale, Physica B, 325, 385 (2003). https://doi.org/10.1016/S0921-4526(02)01691-5
  5. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. P. Nicorovici, and D. Maystre, Opt. Express, 15, 8163 (2007) https://doi.org/10.1364/OE.15.008163
  6. K. M. Byun, S. J. Kim, and D. Kim, Appl. Opt., 46, 5703 (2007). https://doi.org/10.1364/AO.46.005703
  7. U. Fano, J. Opt. Soc. Amer., 31, 213 (1941). https://doi.org/10.1364/JOSA.31.000213
  8. A. Otto, Z. Phys., 216, 398 (1968). https://doi.org/10.1007/BF01391532
  9. E. Kretshmann and H. Raether, Z. Naturforsch., 23, 2135 (1968).
  10. A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Small, 1, 439 (2005). https://doi.org/10.1002/smll.200400099
  11. Z. Huang, H. Fang, and J. Zhu, Adv. Mater., 19, 744 (2007). https://doi.org/10.1002/adma.200600892
  12. C. Geng, L. Zheng, J. Yu, Q. Yan, T. Wei, X. Wang, and D. Shen, J. Mater. Chem., 22, 22678 (2012). https://doi.org/10.1039/c2jm33660j