DOI QR코드

DOI QR Code

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun (Department of Nano Bio Energy Engineering, School of Integrative Engineering, Chung-Ang University) ;
  • Ahn, Sang Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Pyo, Sung Gyu (Department of Nano Bio Energy Engineering, School of Integrative Engineering, Chung-Ang University) ;
  • Son, Hyungbin (Department of Nano Bio Energy Engineering, School of Integrative Engineering, Chung-Ang University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Soo-Kil (Department of Nano Bio Energy Engineering, School of Integrative Engineering, Chung-Ang University)
  • Received : 2013.04.08
  • Accepted : 2013.06.18
  • Published : 2013.09.20

Abstract

The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Keywords

References

  1. Barton, S. C.; Gallaway, J.; Atanassov. P. Chem. Rev. 2004, 104, 4867. https://doi.org/10.1021/cr020719k
  2. Heller, A. Phys. Chem. Chem. Phys. 2004, 6, 212.
  3. Bullen, R. A.; Arnot, T. C.; Lakeman, J. B.; Walsh, F. C. Biosens. Bioelectron. 2006, 21, 2015. https://doi.org/10.1016/j.bios.2006.01.030
  4. Kerzenmarcher, S.; Ducreee, J.; Zengerle, R.; von Stetetten, F. J. Power Sources 2008, 182, 1. https://doi.org/10.1016/j.jpowsour.2008.03.031
  5. Deng, C.; Chen, J.; Chen, X.; Xiao, C.; Nie, L.; Yao, S. Biosens. Bioelectron. 2008, 23, 1272. https://doi.org/10.1016/j.bios.2007.11.009
  6. Safavi, A.; Maleki, N.; Farjami, E. Biosens. Bioelectron. 2009, 24, 1655. https://doi.org/10.1016/j.bios.2008.08.040
  7. Rong, L.-Q.; Yang, C.; Qian, Q.-Y.; Xia, X.-H. Talanta 2007, 72, 819. https://doi.org/10.1016/j.talanta.2006.12.037
  8. Luque, G. L.; Rodriguez, M. C.; Rivas, G. A. Talanta 2005, 66, 467. https://doi.org/10.1016/j.talanta.2004.07.019
  9. Wilson, R.; Turner, A. P. F. Biosens. Bioelectron. 1992, 7, 165. https://doi.org/10.1016/0956-5663(92)87013-F
  10. Park, S.; Boo, H.; Chung, T. D. Anal. Chim. Acta 2006, 556, 46. https://doi.org/10.1016/j.aca.2005.05.080
  11. Mahshid, S. S.; Mahshid, S.; Dolati, A.; Ghorbani, M.; Yang, L.; Luo, S.; Cai, Q. Electrochim. Acta 2011, 58, 551. https://doi.org/10.1016/j.electacta.2011.09.083
  12. Sun, Y.; Buck, H.; Mallouk, T. E. Anal. Chem. 2001, 73, 1599. https://doi.org/10.1021/ac0015117
  13. Jin, C.; Chen, Z. Synthetic Met. 2007, 157, 592. https://doi.org/10.1016/j.synthmet.2007.06.010
  14. Tominaga, M.; Shimazoe, T.; Nagachima, M.; Taniguchi, I. Journal of Electroanal. Chem. 2008, 615, 51. https://doi.org/10.1016/j.jelechem.2007.11.030
  15. Aoun, S. B.; Dursun, Z.; Sotomura, T.; Taniguch, I. Electrochem. Commun. 2004, 6, 742. https://doi.org/10.1016/j.elecom.2004.05.014
  16. Habrioux, A.; Sibert, E.; Servat, K.; Vogel, W.; Kokoh, K. B.; Alonso-Vante, N. J. Phys. Chem. B 2007, 111, 10329. https://doi.org/10.1021/jp0720183
  17. Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin, W. F.; Vieltich, W. Langmuir 2000, 16, 522. https://doi.org/10.1021/la990594n
  18. Cui, H.-F.; Ye, J.-S.; Liu, X.; Zhang, W.-D.; Sheu, F.-S. Nanotechnology 2006, 17, 2334. https://doi.org/10.1088/0957-4484/17/9/043
  19. Tominaga, M.; Nagashima, M.; Nishiyama, K.; Taniquchi, I. Electrochem. Commun. 2007, 9, 1892. https://doi.org/10.1016/j.elecom.2007.04.024
  20. Hassan, H. B.; Hamid, Z. A. Int. J. Electrochem. Sci. 2011, 6, 5741.
  21. Jafarian, M.; Forouzandeh, F.; Danaee, I.; Gobal, F. J. Solid State Electrochem. 2009, 13, 1171. https://doi.org/10.1007/s10008-008-0632-1
  22. Bai, Y.; Yang, W.; Sun, Y.; Sun, C. Sensor. Actuat. B: Chem. 2008, 134, 471. https://doi.org/10.1016/j.snb.2008.05.028
  23. Ho, S.-W.; Su, Y.-S. J. Catal. 1997, 168, 51. https://doi.org/10.1006/jcat.1997.1614
  24. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El -Sayed, M. A. Science 1996, 272, 1924. https://doi.org/10.1126/science.272.5270.1924
  25. Kim, H.; Subramanian, N. P.; Popov, B. N. J. Power Sources 2004, 138, 14. https://doi.org/10.1016/j.jpowsour.2004.06.012
  26. Duarte, M. M. E.; Pilla, A. S.; Sieben, J. M.; Mayer, C. E. Electrochem. Commun. 2006, 8, 159. https://doi.org/10.1016/j.elecom.2005.11.003
  27. Hu, Y.; Jin, J.; Wu, P.; Zhang, H.; Cai, C. Electrochim. Acta 2010, 56, 491. https://doi.org/10.1016/j.electacta.2010.09.021
  28. Alvisi, M.; Galtieri, G.; Giorgi, L.; Giorgi, R.; Serra, E.; Signore, M. A. Surf. Coat. Technol. 2005, 200, 1325. https://doi.org/10.1016/j.surfcoat.2005.07.093
  29. Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H. J. Phys. Chem. B 2003, 107, 11013.
  30. Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. J. Phys. Chem. B 2006, 110, 24606. https://doi.org/10.1021/jp0640979
  31. Wang, D.; Xin, H. L.; Yu, Y.; Wang, H.; Rus, E.; Muller, D. A.; Abruna, H. D. J. Am. Chem. Soc. 2010, 132, 17664. https://doi.org/10.1021/ja107874u
  32. Wang, J.; Gong, J.; Xiong, Y.; Yang, J.; Gao, Y.; Liu, Y.; Lu, X.; Tang, Z. Chem. Commun. 2011, 47, 6894. https://doi.org/10.1039/c1cc11784j
  33. Pasta, M.; Ruffo, R.; Falletta, E.; Mari, C. M.; Della Pina, C. Gold Bull. 2010, 43, 57. https://doi.org/10.1007/BF03214967
  34. Ivanov, I.; Vidakovic, T. R.; Sundmacher, K. Chem. Biochem. Eng. Q 2009, 23, 77.
  35. Pasta, M.; Mantia, F. L.; Cui, Y. Electrochim. Acta 2010, 55, 5561. https://doi.org/10.1016/j.electacta.2010.04.069
  36. Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr. NIST Standard Reference Database 20, Version 3.4 (web version) (http:/srdata.nist.gov/xps/), 2003.
  37. Basu, D.; Basu, S. Int. J. Hydrogen Energy 2011, 36, 14923. https://doi.org/10.1016/j.ijhydene.2011.03.042
  38. Zebda, A.; Gondran, C.; Goff, A. L.; Holzinger, M.; Cinquin, P.; Cosnier, S. Nat. Commun. 2011, 2:370 doi: 10.1038/ncomms1365.
  39. Shim, J.; Kim, G.-Y.; Moon, S.-H. J. Electroanal. Chem. 2011, 653, 14. https://doi.org/10.1016/j.jelechem.2011.01.015
  40. Schubart, I. W.; Gobel, G.; Lisdat, F. Electrochim. Acta 2012, 82, 224. https://doi.org/10.1016/j.electacta.2012.03.128
  41. Zebda, A.; Gondran, C.; Cinquin, P.; Cosnier, S. Sensor. Actuat. B: Chem. 2012, 173, 760. https://doi.org/10.1016/j.snb.2012.07.089

Cited by

  1. Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2019
  2. Areca catechu Assisted Synthesis of Silver Nanoparticles and its Electrocatalytic Activity on Glucose Oxidation vol.28, pp.6, 2017, https://doi.org/10.1007/s10876-017-1284-z