• Title/Summary/Keyword: Binary matrix

Search Result 199, Processing Time 0.027 seconds

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

Enhanced Detection of Glycans by MALDI-TOF Mass Spectrometry Using a Binary Matrix of 2,5-Dihydroxybenzoic Acid and 2,6-Dihydroxybenzoic Acid

  • Kim, Yunjin;Kim, Taehee;Lee, Jihyeon;Im, Haeju;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.38-40
    • /
    • 2013
  • Glycans released from ovalbumin by PNGase F were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry using three different dihydroxybenzoic acid (DHB) matrix systems: 2,5-DHB, 2,6-DHB, and a 2,5-DHB/2,6-DHB binary matrix. Relative to the results obtained with the single-component matrices (2,5-DHB or 2,6-DHB), the 2,5-DHB/2,6-DHB binary matrix boasted lower background noise and higher sensitivity. A total of 16 glycan peaks were observed using the 2,5-DHB/2,6-DHB binary matrix, while only 10 and 9 glycan peaks were observed using the 2,5-DHB and 2,6-DHB matrices, respectively.

Secure Outsourced Computation of Multiple Matrix Multiplication Based on Fully Homomorphic Encryption

  • Wang, Shufang;Huang, Hai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5616-5630
    • /
    • 2019
  • Fully homomorphic encryption allows a third-party to perform arbitrary computation over encrypted data and is especially suitable for secure outsourced computation. This paper investigates secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption. Our work significantly improves the latest Mishra et al.'s work. We improve Mishra et al.'s matrix encoding method by introducing a column-order matrix encoding method which requires smaller parameter. This enables us to develop a binary multiplication method for multiple matrix multiplication, which multiplies pairwise two adjacent matrices in the tree structure instead of Mishra et al.'s sequential matrix multiplication from left to right. The binary multiplication method results in a logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication method with linear-depth circuit. Experimental results show that for the product of ten 32×32 (64×64) square matrices our method takes only several thousand seconds while Mishra et al.'s method will take about tens of thousands of years which is astonishingly impractical. In addition, we further generalize our result from square matrix to non-square matrix. Experimental results show that the binary multiplication method and the classical dynamic programming method have a similar performance for ten non-square matrices multiplication.

A VLSI Architecture for the Binary Jacket Sequence (이진 자켓 비트열의 VLSI 구조)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.116-123
    • /
    • 2002
  • The jacket matrix is based on the Walsh-Hadamard matrix and an extension of it. While elements of the Walsh-Hadamard matrix are +1, or -1, those of the Jacket matrix are ${\pm}$1 and ${\pm}$$\omega$, which is $\omega$, which is ${\pm}$j and ${\pm}$2$\sub$n/. This matrix has weights in the center part of the matrix and its size is 1/4 of Hadamard matrix, and it has also two parts, sigh and weight. In this paper, instead of the conventional Jacket matrix where the weight is imposed by force, a simple Jacket sequence generation method is proposed. The Jacket sequence is generated by AND and Exclusive-OR operations between the binary indices bits of row and those of column. The weight is imposed on the element by when the product of each Exclusive-OR operations of significant upper two binary index bits of a row and column is 1. Each part of the Jacket matrix can be represented by jacket sequence using row and column binary index bits. Using Distributed Arithmetic (DA), we present a VLSI architecture of the Fast Jacket transform is presented. The Jacket matrix is able to be applied to cryptography, the information theory and complex spreading jacket QPSK modulation for WCDMA.

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.

Fast Binary Wavelet Transform (고속 이진 웨이블렛 변환)

  • 강의성;이경훈;고성제
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.25-28
    • /
    • 2001
  • A theory of binary wavelets has been recently proposed by using two-band perfect reconstruction filter banks over binary field . Binary wavelet transform (BWT) of binary images can be used as an alternative to the real-valued wavelet transform of binary images in image processing applications such as compression, edge detection, and recognition. The BWT, however, requires large amount of computations since its operation is accomplished by matrix multiplication. In this paper, a fast BWT algorithm which utilizes filtering operation instead or matrix multiplication is presented . It is shown that the proposed algorithm can significantly reduce the computational complexity of the BWT. For the decomposition and reconstruction or an N ${\times}$ N image, the proposed algorithm requires only 2LN$^2$ multiplications and 2(L-1)N$^2$addtions when the filter length is L, while the BWT needs 2N$^3$multiplications and 2N(N-1)$^2$additions.

  • PDF

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2014
  • The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.

Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry

  • Yang, Hyo-Jik;Lee, Ae-Ra;Lee, Myung-Ki;Kim, Woong;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • A comprehensive comparative investigation of small carbohydrates in laser desorption ionization was performed on supporting materials composed of sodiated 2,5-dihydroxybenzoic acid (DHB), carbon nanotubes, an ionic liquid matrix of DHB-pyridine, a binary matrix of DHB-aminopyrazine, zinc oxide nanoparticles, and gold nanoparticles. The abundance of $[M+Na]^+$ ions, where M is glucose or sucrose, was compared for each supporting material. The highest sensitivity for both glucose and sucrose, with a detection limit of 3 pmol, was observed with carbon nanotubes. Both carbon nanotubes and the ionic liquid matrix exhibited the highest reproducibility.

Electrical Properties of PVdF/PVP Composite Filled with Carbon Nanotubes Prepared by Floating Catalyst Method

  • Kim, Woon-Soo;Song, Hee-Suk;Lee, Bang-One;Kwon, Kyung-Hee;Lim, Yun-Soo;Kim, Myung-Soo
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.253-258
    • /
    • 2002
  • The multi-wall carbon nanotubes (MWNTs) with graphite crystal structure were synthesized by the catalytic decomposition of a ferrocene-xylene mixture in a quartz tube reactor to use as the conductive filler in the binary polymer matrix composed of poly(vinylidene fluoride) (PVdF) and poly(vinyl pyrrolidone) (PVP) for the EMI (electromagnetic interference) shielding applications. The yield of MWNTS was significantly dependent on the reaction temperature and the mole ratio of ferrocene to xylene, approaching to the maximum at 800 $^{\circ}C$ and 0.065 mole ratio. The electrical conductivity of the MWNTs-filled PVdF/PVP composite proportionally depended on the mass ratio of MWNTs to the binary polymer matrix, enhancing significantly from 0.56 to 26.7 S/cm with the raise of the mass ratio of MWNTs from 0.1 to 0.4. Based on the higher electrical conductivity and better EMI shielding effectiveness than the carbon nanofibers (CNFs)-filled coating materials, the MWNTs-filled binary polymer matrix showed a prospective possibility to apply to the EMI shielding materials. Moreover, the good adhesive strength confirmed that the binary polymer matrix could be used for improving the plastic properties of the EMI shielding materials.

Optical Arithmetic Technique Using Optical Phase Conjugate Wave (위상 공액파를 이용한 광학적 연산 방식)

  • 엄순영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.95-101
    • /
    • 1990
  • Parallel optical arithmetic techniques have been developed using the correlation property of optical phase conjugate wave generated by degenerated four wave-mixing. In this paper, conventional rectangular-type coded pattern used for optical logic system is replaced by circular one for effective beam coupling in a photorefractive $BaTiO_3$ material. By adequately adjusting the distance between circular-type pixels of the input pattern and grouping the correlated output, optical binary half addition/subtraction, binary multiplication and, matrix-matrix computation are demonstrated.

  • PDF