DOI QR코드

DOI QR Code

Enhanced Detection of Glycans by MALDI-TOF Mass Spectrometry Using a Binary Matrix of 2,5-Dihydroxybenzoic Acid and 2,6-Dihydroxybenzoic Acid

  • Kim, Yunjin (Department of Chemistry, Chungnam National University) ;
  • Kim, Taehee (Department of Chemistry, Chungnam National University) ;
  • Lee, Jihyeon (Department of Chemistry, Chungnam National University) ;
  • Im, Haeju (Department of Chemistry, Chungnam National University) ;
  • Kim, Jeongkwon (Department of Chemistry, Chungnam National University)
  • Received : 2013.06.23
  • Accepted : 2013.06.27
  • Published : 2013.06.01

Abstract

Glycans released from ovalbumin by PNGase F were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry using three different dihydroxybenzoic acid (DHB) matrix systems: 2,5-DHB, 2,6-DHB, and a 2,5-DHB/2,6-DHB binary matrix. Relative to the results obtained with the single-component matrices (2,5-DHB or 2,6-DHB), the 2,5-DHB/2,6-DHB binary matrix boasted lower background noise and higher sensitivity. A total of 16 glycan peaks were observed using the 2,5-DHB/2,6-DHB binary matrix, while only 10 and 9 glycan peaks were observed using the 2,5-DHB and 2,6-DHB matrices, respectively.

Keywords

References

  1. An, H. J.; Peavy, T. R.; Hedrick, J. L.; Lebrilla, C. B. Anal. Chem. 2003, 75, 5628. https://doi.org/10.1021/ac034414x
  2. Hua, S.; Oh, M. J.; An, H. J. Mass Spectrom. Lett. 2013, 4, 10. https://doi.org/10.5478/MSL.2013.4.1.10
  3. Harvey, D. J. Rapid Commun. Mass Spectrom. 1993, 7, 614. https://doi.org/10.1002/rcm.1290070712
  4. Lee, A.; Yang, H. J.; Kim, Y.; Kim, J. Bull. Korean Chem. Soc. 2009, 30, 1127. https://doi.org/10.5012/bkcs.2009.30.5.1127
  5. Shin, S.; Yang, H. J.; Kim, J. Anal. Biochem. 2011, 414, 125. https://doi.org/10.1016/j.ab.2011.02.026
  6. Park, E.; Yang, H.; Kim, Y.; Kim, J. Food Chem. 2012, 134, 1658. https://doi.org/10.1016/j.foodchem.2012.03.069
  7. Jessome, L.; Hsu, N. Y.; Wang, Y. S.; Chen, C. H. Rapid Commun. Mass Spectrom. 2008, 22, 130. https://doi.org/10.1002/rcm.3343
  8. Laugesen, S.; Roepstorff, P. J. Am. Soc. Mass Spectrom. 2003, 14, 992. https://doi.org/10.1016/S1044-0305(03)00262-9
  9. Lastovickova, M.; Chmelik, J.; Bobalova, J. Int. J. Mass Spectrom. 2009, 281, 82. https://doi.org/10.1016/j.ijms.2008.12.017
  10. Harvey, D. J.; Wing, D. R.; Kuster, B.; Wilson, I. B. J. Am. Soc. Mass Spectrom. 2000, 11, 564. https://doi.org/10.1016/S1044-0305(00)00122-7
  11. Snovida, S. I.; Rak-Banville, J. M.; Perreault, H. J. Am. Soc. Mass Spectrom. 2008, 19, 1138. https://doi.org/10.1016/j.jasms.2008.04.033
  12. Kjellstrom, S.; Jensen, O. N. Anal. Chem. 2004, 76, 5109. https://doi.org/10.1021/ac0400257
  13. Park, S.; Kim, T.; Lee, J.; Seo, M.; Kim, J. Rapid Commun. Mass Spectrom. 2013, 27, 842. https://doi.org/10.1002/rcm.6508

Cited by

  1. Matrix Additives in MALDI-TOF MS Analysis of Glycans vol.37, pp.1, 2016, https://doi.org/10.1002/bkcs.10617
  2. Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry vol.89, 2017, https://doi.org/10.1016/j.trac.2017.01.012
  3. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014 vol.37, pp.4, 2018, https://doi.org/10.1002/mas.21530
  4. MALDI matrices for low molecular weight compounds: an endless story? vol.410, pp.17, 2018, https://doi.org/10.1007/s00216-018-1014-x