DOI QR코드

DOI QR Code

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi (Department of Chemistry, Chungnam National University) ;
  • Kim, Taehee (Department of Chemistry, Chungnam National University) ;
  • Kim, Jeongkwon (Department of Chemistry, Chungnam National University)
  • Received : 2014.05.11
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.

Keywords

References

  1. Shanta, S. R.; Zhou, L. H.; Park, Y. S.; Kim, Y. H.; Kim, Y.; Kim, K. P. Anal. Chem. 2011, 83, 1252. https://doi.org/10.1021/ac1029659
  2. Yang, C.; Hu, X.; Loboda, A. V.; Lipson, R. H. J. Am. Soc. Mass Spectrom. 2010, 21, 294. https://doi.org/10.1016/j.jasms.2009.10.016
  3. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Angew. Chem. Int. Ed. 2010, 49, 6288. https://doi.org/10.1002/anie.200902672
  4. Junejo, Y.; Baykal, A.; Sozeri, H. Cent. Eur. J. Chem. 2013, 11, 1527.
  5. Scott, R. A.; Peppas, N. A. Biomaterials 1999, 20, 1371. https://doi.org/10.1016/S0142-9612(99)00040-X
  6. de Koster, C. G.; Duursma, M. C.; van Rooij, G. J.; Heeren, R. M.; Boon, J. J. Rapid Commun. Mass Spectrom. 1995, 9, 957. https://doi.org/10.1002/rcm.1290091018
  7. Hanton, S. D.; Cornelio Clark, P. A.; Owens, K. G. J. Am. Soc. Mass Spectrom. 1999, 10, 104. https://doi.org/10.1016/S1044-0305(98)00135-4
  8. Lee, A.; Yang, H. J.; Kim, Y.; Kim, J. Bull. Korean Chem. Soc. 2009, 30, 1127. https://doi.org/10.5012/bkcs.2009.30.5.1127
  9. Erra-Balsells, R.; Nonami, H. Arkivoc 2003, 2003, 517. https://doi.org/10.3998/ark.5550190.0004.a48
  10. Enjalbal, C.; Ribiere, P.; Lamaty, F.; Yadav-Bhatnagar, N.; Martinez, J.; Aubagnac, J. L. J. Am. Soc. Mass Spectrom. 2005, 16, 670. https://doi.org/10.1016/j.jasms.2005.01.020
  11. Padliya, N. D.; Wood, T. D. Anal. Chim. Acta 2008, 627, 162. https://doi.org/10.1016/j.aca.2008.05.059

Cited by

  1. Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry vol.6, pp.2, 2015, https://doi.org/10.5478/MSL.2015.6.2.27