DOI QR코드

DOI QR Code

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry

  • Jeong, Ji-Seon (Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science)
  • Received : 2014.04.21
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.

Keywords

References

  1. Sacks, D. B. Diabetes Care 2011, 34, 518. https://doi.org/10.2337/dc10-1546
  2. Bi, J.; Wu, L.; Yang, B.; Yang, Y.; Wang, J. Anal. Bioanal. Chem. 2012, 403, 549. https://doi.org/10.1007/s00216-012-5834-9
  3. Bry, L.; Chen, P. C.; Sacks, D. B. Clin. Chem. 2001, 47, 153.
  4. Thevarajah, M.; Nadzimah, M. N.; Chew, Y. Y. Clin. Biochem. 2009, 42, 430. https://doi.org/10.1016/j.clinbiochem.2008.10.015
  5. Kobold, U.; Jeppsson, J. O.; Dulffer, T.; Finke, A.; Hoelzel, W.; Miedema, K. Clin. Chem. 1997, 43, 1944.
  6. Little, R. R.; Rohlfing, C. L.; Wiedmeyer, H. M.; Myers, G. L.; Sacks, D. B.; Goldstein, D. E. Clin. Chem. 2001, 47, 1985.
  7. Goodall, I. Clin. Biochem. Rev. 2005, 26, 5.
  8. Little, R. R.; Rohlfing, C. L.; Sacks, D. B. Clin. Chem. 2011, 57, 205. https://doi.org/10.1373/clinchem.2010.148841
  9. Jeppsson, J. O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; Thienpont, L.; Umemoto, M.; Weykamp, C. Clin. Chem. Lab. Med. 2002, 40, 78.
  10. Finke, A.; Kobold, U.; Hoelzel, W.; Weykamp, C.; Miedema, K.; Jeppsson, J. O. Clin. Chem. Lab. Med. 1998, 36, 299.
  11. Kaiser, P.; Akerboom, T.; Ohlendorf, R.; Reinauer, H. Clin. Chem. 2010, 56, 750. https://doi.org/10.1373/clinchem.2009.139477
  12. Vesper, H. W.; Mi, L.; Enada, A.; Myers, G. L. Rapid Commun. Mass Spectrom. 2005, 19, 2865. https://doi.org/10.1002/rcm.2135
  13. Hirokawa, K.; Shimoji, K.; Kajiyama, N. Biotechnol. Lett. 2005, 27, 963. https://doi.org/10.1007/s10529-005-7832-x
  14. Jeppsson, J. O.; Jerntorp, P.; Sundkvist, G.; Englund, H.; Nylund, V. Clin. Chem. 1986, 32, 1867.
  15. Jeong, J. S.; Lim, H. M.; Kim, S. K.; Ku, H. K.; Oh, K. H.; Park, S. R. J. Chromatogr. A 2011, 1218, 6596. https://doi.org/10.1016/j.chroma.2011.07.053
  16. Weiss, M.; Manneberg, M.; Juranville, J. F.; Lahm, H. W.; Fountoulakis, M. J. Chromatogr. A 1998, 795, 263. https://doi.org/10.1016/S0021-9673(97)00983-7
  17. Drapeau, G. R. Methods Enzymol. 1976, 45, 469. https://doi.org/10.1016/S0076-6879(76)45041-3
  18. van den Ouweland, J. M.; de Keijzer, M. H.; van Daal, H. Clin. Biochem. 2010, 43, 623. https://doi.org/10.1016/j.clinbiochem.2009.12.020

Cited by

  1. Fully international system of units-traceable glycated hemoglobin quantification using two stages of isotope-dilution high-performance liquid chromatography–tandem mass spectrometry vol.1513, 2017, https://doi.org/10.1016/j.chroma.2017.07.056