DOI QR코드

DOI QR Code

Accurate Measurement of Arsenic in Laver by Gravimetric Standard Addition Method Combined with High Resolution Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Hyeon-Ji (Korea Research Institute of Standards and Science (KRISS)) ;
  • Yim, Yong-Hyeon (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Jeongkwon (Department of Chemistry, Chungnam National University) ;
  • Hwang, Euijin (Korea Research Institute of Standards and Science (KRISS))
  • Received : 2014.06.03
  • Accepted : 2014.06.11
  • Published : 2014.06.30

Abstract

A gravimetric standard addition method combined with internal standard calibration has been successfully developed for the accurate analysis of total arsenic in a laver candidate reference material. A model equation for the gravimetric standard addition approach using an internal standard was derived to determine arsenic content in samples. Handlings of samples, As standard and internal standard were carried out gravimetrically to avoid larger uncertainty and variability involved in the volumetric preparation. Germanium was selected as the internal standard because of its close mass to the arsenic to minimize mass-dependent bias in mass spectrometer. The ion signal ratios of $^{75}As^+$ to $^{72}Ge^+$ (or $^{73}Ge^+$) were measured in high resolution mode ($R{\geq}10,000$) to separate potential isobaric interferences by high resolution ICP/MS. For method validation, the developed method was applied to the analysis of arsenic content in the NMIJ 7402-a codfish certified reference material (CRM) and the result was $37.07mg{\cdot}kg^{-1}{\pm}0.45mg{\cdot}kg^{-1}$ which is in good agreement with the certified value, $36.7mg{\cdot}kg^{-1}{\pm}1.8mg{\cdot}kg^{-1}$. Finally, the certified value of the total arsenic in the candidate laver CRM was determined to be $47.15mg{\cdot}kg^{-1}{\pm}1.32mg{\cdot}kg^{-1}$ (k = 2.8 for 95% confidence level) which is an excellent result for arsenic measurement with only 2.8 % of relative expanded uncertainty.

Keywords

References

  1. Mandal, B. K.; Suzuki, K. T. Talanta 2002, 58, 201. https://doi.org/10.1016/S0039-9140(02)00268-0
  2. Bhattacharya, P.; Welch, A. H.; Stollenwerk, K. G.; McLaughlin, M. J.; Bundschuh, J.; Panaullah, G. Sci. Total Environm. 2007, 379, 109. https://doi.org/10.1016/j.scitotenv.2007.02.037
  3. World Health Organization (WHO) Environmental health criteria 224, arsenic and arsenic compounds. Interorganization programme for the sound management of chemials. Generva; 2001.
  4. Rose, M.; Lewis, J.; Langford, N.; Baxter, M.; Origgi, S.; Barber, M.; MacBain, H.; Thomas, K. Food Chem. Toxicol. 2007, 45, 1263-1267. https://doi.org/10.1016/j.fct.2007.01.007
  5. Melamed, D. Anal. Chim. Acta 2005, 532, 1. https://doi.org/10.1016/j.aca.2004.10.047
  6. ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories, 2nd Ed.; ISO: Geneva, Switzerland, 2005.
  7. Zeisler, R.; Mackey, E. A.; Lamaze, G. P.; Stover, T. E.; Sflaz Spatz, R.; Greenberg, R. R. J. Radioanal. Nucl. Chem. 2006, 269, 291. https://doi.org/10.1007/s10967-006-0381-5
  8. Kohlmeyer, U.; Jantzen, E.; Kuballa, J.; Jakubik, S. Anal. Bioanal. Chem. 2003, 377, 6. https://doi.org/10.1007/s00216-003-2064-1
  9. Saxberg, B. E. H.; Kowalski, B. R. Anal. Chem. 1979, 51, 1031. https://doi.org/10.1021/ac50043a059
  10. Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. J. Anal. At. Spectrom. 2001, 16, 299. https://doi.org/10.1039/b007241i
  11. Hauswaldt, A. L.; Rienitz, O.; Jahrling, R.; Fischer, N.; Schiel, D.; Labarraque, G.; Magnusson, B. Accred. Qual. Assur. 2012, 17, 129. https://doi.org/10.1007/s00769-011-0827-5
  12. Guide to the Expression of Uncertainty in Measurement. ISO: Geneva, 1995.

Cited by

  1. Laboratory capacity building through the use of metrologically traceable reference values in proficiency testing programmes vol.22, pp.6, 2017, https://doi.org/10.1007/s00769-017-1298-0