Communications for Statistical Applications and Methods
/
제8권3호
/
pp.885-894
/
2001
Decision tree methods is the one of data mining techniques. Classification trees are used to predict a class label. When a tree grows, the conventional splitting criteria use the weighted average of the left and the right child nodes for measuring the node impurity. In this paper, new splitting criteria for classification trees are proposed which improve the interpretablity of trees comparing to the conventional methods. The criteria search only for interesting subsets of the data, as opposed to modeling all of the data equally well. As a result, the tree is very unbalanced but extremely interpretable.
최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.
In this research, we employed various data mining techniques to build predictive models for win-loss prediction in Korean professional baseball games. The historical data containing information about players and teams was obtained from the official materials that are provided by the KBO website. Using the collected raw data, we additionally prepared two more types of dataset, which are in ratio and binary format respectively. Dividing away-team's records by the records of the corresponding home-team generated the ratio dataset, while the binary dataset was obtained by comparing the record values. We applied seven classification techniques to three (raw, ratio, and binary) datasets. The employed data mining techniques are decision tree, random forest, logistic regression, neural network, support vector machine, linear discriminant analysis, and quadratic discriminant analysis. Among 21(= 3 datasets${\times}$7 techniques) prediction scenarios, the most accurate model was obtained from the random forest technique based on the binary dataset, which prediction accuracy was 84.14%. It was also observed that using the ratio and the binary dataset helped to build better prediction models than using the raw data. From the capability of variable selection in decision tree, random forest, and stepwise logistic regression, we found that annual salary, earned run, strikeout, pitcher's winning percentage, and four balls are important winning factors of a game. This research is distinct from existing studies in that we used three different types of data and various data mining techniques for win-loss prediction in Korean professional baseball games.
The clipping value, defined as the log-likelihood ratio (LLR) in the case wherein all the list of candidates have the same binary value, is investigated, and an effective method to estimate it is presented for iterative tree search detection. The basic principle behind the method is that the clipping value of a channel bit is equal to the LLR of the maximum probability of correct decision of the bit to the corresponding probability of erroneous decision. In conjunction with multilevel bit mappings, the clipping value can be calculated with the parameters of the number of transmit antennas, $N_t$; number of bits per constellation point, $M_c$; and variance of the channel noise, $\sigma^2$, per real dimension in the Rayleigh fading channel. Analyses and simulations show that the bit error performance of the proposed method is better than that of the conventional fixed-value method.
A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This quantification generates fault tree solutions such as minimal cut sets, minimal path sets, or binary decision diagrams (BDDs), and then, calculates top event probability and importance measures. This paper presents a new linear time algorithm to detect modules of large fault trees. It is shown through benchmark tests that the new method proposed in this study can very quickly detect the modules of a huge fault tree. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.
데이터 분석가에게 많은 노력이 요구되지 않으면서 사용자가 쉽게 분석결과를 이해할 수 있는 범용 분류기법으로서 가장 대표적인 것은 Breiman이 개발한 의사결정나무를 들 수 있다. 의사결정나무에서 기본이 되는 2가지 핵심내용은 독립변수의 차원 공간을 반복적으로 분할하는 것과 평가용 데이터를 사용하여 가지치기를 하는 것이다. 분류문제에서 반응변수는 범주형 변수여야 한다. 반복적 분할은 변수 의 차원 공간을 겹치지 않는 다차원 직사각형으로 나눈다. 여기서 변수는 연속형, 이진 혹은 서열의 척도이다. 본 논문에서는 새로운 사례를 분류함에 있어서 분류의 성능을 평가하기 위해 분류나무의 정확도 정밀도 재현률 등을 실험하고자 한다.
Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
Asian Pacific Journal of Cancer Prevention
/
제17권2호
/
pp.835-838
/
2016
Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.
미세먼지 예보에 대한 높은 정확도가 요구됨에 따라 기계 학습의 알고리즘을 적용하여 예측 정확도를 높이려는 다양한 시도들이 이루어지고 있다. 그러나 미세먼지의 특성과 불균형적인 농도별 발생 비율에 대한 문제로 예측 모델의 학습 및 예측이 잘 이루어지지 않는다. 이러한 문제를 해결하기 위해 특정 농도를 기준으로 미세먼지를 저농도와 고농도로 구분하여 예측을 수행하는 등 다양한 연구가 진행되고 있다. 본 논문에서는 미세먼지 농도의 불균형 특성으로 인한 예측 성능 향상의 문제를 해결하기 위한 미세먼지 농도의 이진 분류 모델을 제안하였다. 분류 알고리즘 중 logistic regression, decision tree, SVM 및 MLP를 이용하여 PM10에 대한 이진분류 모델들을 설계하였다. 오차 행렬을 통해 성능을 비교한 결과, 4가지 모델 중 MLP 모델이 89.98%의 정확도로 가장 높은 이진 분류 성능을 보였다.
The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.
Mo, Yuchang;Zhong, Farong;Zhao, Xiangfu;Yang, Quansheng;Cui, Gang
Nuclear Engineering and Technology
/
제44권7호
/
pp.755-766
/
2012
A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.