• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.031 seconds

A Keyword-Based Big Data Analysis for Individualized Health Activity: Focusing on Methodological Approach

  • Kim, Han-Byul;Bae, Geun-Pyo;Huh, Jun-Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.540-543
    • /
    • 2017
  • It will be possible to solve some of the major issues in our society and economy with the emerging Big Data used across 21st century global digital economy. One of the main areas where big data can be quite useful is the medical and health area. IT technology is being used extensively in this area and expected to expand its application field further. However, there is still room for improvement in the usage of Big Data as it is difficult to search unstructured data contained in Big Data and collect statistics for them. This limits wider application of Big Data. Depending on data collection and analysis method, the results from a Big Data can be varied. Some of them could be positive or negative so that it is essential that Big Data should be handled adequately and appropriately adapting to a purpose. Therefore, a Big Data has been constructed in this study to applying Crawling technique for data mining and analyzed with R. Also, the data were visualized for easier recognition and this was effective in developing an individualized health plan from different angles.

Application Of Open Data Framework For Real-Time Data Processing (실시간 데이터 처리를 위한 개방형 데이터 프레임워크 적용 방안)

  • Park, Sun-ho;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1179-1187
    • /
    • 2019
  • In today's technology environment, most big data-based applications and solutions are based on real-time processing of streaming data. Real-time processing and analysis of big data streams plays an important role in the development of big data-based applications and solutions. In particular, in the maritime data processing environment, the necessity of developing a technology capable of rapidly processing and analyzing a large amount of real-time data due to the explosion of data is accelerating. Therefore, this paper analyzes the characteristics of NiFi, Kafka, and Druid as suitable open source among various open data technologies for processing big data, and provides the latest information on external linkage necessary for maritime service analysis in Korean e-Navigation service. To this end, we will lay the foundation for applying open data framework technology for real-time data processing.

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

A Study on Finding Emergency Conditions for Automatic Authentication Applying Big Data Processing and AI Mechanism on Medical Information Platform

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2772-2786
    • /
    • 2022
  • We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.

Incremental MapReduce of atypical Big Data Processing in Mobile Game (모바일게임에 적용 가능한 비정형 Big Data 처리를 위한 Incremental MapReduce)

  • Park, Sung-Joon;Kim, Jung-Woong
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.301-304
    • /
    • 2014
  • 비정형 게임 Big Data에서 고효율 정보를 추출하고, 신뢰 할 수 있는 클러스터 게임서버 환경을 위한 병렬 처리를 위해 MapReduce를 사용한다. 본 논문에서는 빈번하게 입력되는 신규 게임데이터 처리를 위해 함수 Demap을 사용하는 Incremental MapReduce를 적용하여 불필요한 중간 값 저장과 재계산 없이 점차적으로 MapReduce 함수를 실행한다.

A Study on the Effect of the Name Node and Data Node on the Big Data Processing Performance in a Hadoop Cluster (Hadoop 클러스터에서 네임 노드와 데이터 노드가 빅 데이터처리 성능에 미치는 영향에 관한 연구)

  • Lee, Younghun;Kim, Yongil
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Big data processing processes various types of data such as files, images, and video to solve problems and provide insightful useful information. Currently, various platforms are used for big data processing, but many organizations and enterprises are using Hadoop for big data processing due to the simplicity, productivity, scalability, and fault tolerance of Hadoop. In addition, Hadoop can build clusters on various hardware platforms and handle big data by dividing into a name node (master) and a data node (slave). In this paper, we use a fully distributed mode used by actual institutions and companies as an operation mode. We have constructed a Hadoop cluster using a low-power and low-cost single board for smooth experiment. The performance analysis of Name node is compared through the same data processing using single board and laptop as name nodes. Analysis of influence by number of data nodes increases the number of data nodes by two times from the number of existing clusters. The effect of the above experiment was analyzed.

Application Analysis of Smart Tourism Management Model under the Background of Big Data and IOT

  • Gangmin Weng;Jingyu Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.347-354
    • /
    • 2023
  • The rapid development of information technology has accelerated the application of big data and the Internet of Things in various industries. Big data has a great potential in the development of smart tourism. With the help of innovation in emerging technologies such as big data and Internet of Things, smart tourism has a better possibility to surpass traditional tourism. Therefore, this article provides a theoretical support to this process. It has explored the innovative management model of big data and IoT in smart tourism and evaluate their effects on promoting tourism. It offers a reference for the integration and innovation of the tourism theory system. Before big data technology, the development of Internet boosted online tourism. However, tourism marketing is still inefficient due to a lack of understanding about tourists. After many practical explorations of big data technology, tourism websites begin to adopt big data technology in their daily operations. With the changes in tourists' preferences and needs, further innovation and research are needed to help smart tourism keep up with the changes in the market and create more competitive products and services. Innovation serves as the driving force for enterprises to occupy the market and develop.

Shared Distributed Big-Data Processing Platform Model: a Study (대용량 분산처리 플랫폼 공유 모델 연구)

  • Jeong, Hwanjin;Kang, Taeho;Kim, GyuSeok;Shin, YoungHo;Jeong, Jinkyu
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.601-613
    • /
    • 2016
  • With the increasing need for big data processing, building a shared big data processing platform is important to minimize time and monetary costs. In shared big data processing, multitenancy is a major requirement that needs to be addressed, in order to provide a single isolated personal big data platform for each user, but to share the underlying hardware is shared among users to increase hardware utilization. In this paper, we explore two well-known shared big data processing platform models. One is to use a native Hadoop cluster, and the other is to build a virtual Hadoop cluster for each user. For each model we verified whether it is sufficient to support multi-tenancy. We also present a method to complement unsupported multi-tenancy features in a native Hadoop cluster model. Lastly we built prototype platforms and compared the performance of both models.

Integration of Cloud and Big Data Analytics for Future Smart Cities

  • Kang, Jungho;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1259-1264
    • /
    • 2019
  • Nowadays, cloud computing and big data analytics are at the center of many industries' concerns to take advantage of the potential benefits of building future smart cities. The integration of cloud computing and big data analytics is the main reason for massive adoption in many organizations, avoiding the potential complexities of on-premise big data systems. With these two technologies, the manufacturing industry, healthcare system, education, academe, etc. are developing rapidly, and they will offer various benefits to expand their domains. In this issue, we present a summary of 18 high-quality accepted articles following a rigorous review process in the field of cloud computing and big data analytics.

Adaptive Boundary Correction based Particle Swarm Optimization for Activity Recognition (사용자 행동인식을 위한 적응적 경계 보정기반 Particle Swarm Optimization 알고리즘)

  • Heo, Seonguk;Kwon, Yongjin;Kang, Kyuchang;Bae, Changseok
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1166-1169
    • /
    • 2012
  • 본 논문은 사용자 행동인식을 위해 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선을 통한 데이터 분류에서 데이터의 수집환경에 의해 발생하는 문제를 벡터의 길이비교를 이용한 보정을 통해 보완한 알고리즘을 제안한다. 기존의 PSO 알고리즘은 데이터 분류를 위해서 데이터의 최소, 최대값을 이용하여 경계를 생성하고, 이를 이용하여 데이터를 분류하였다. 그러나 PSO를 이용하여 행동인식을 할 때 행동이 수집되는 환경에 따라서 경계에 포함되지 못해 행동이 분류되지 못하는 문제가 있다. 이러한 분류의 문제를 보완하기 위해 경계를 벗어난 데이터와 각 행동을 대표하는 데이터의 벡터 길이를 계산하고 최소길이를 비교하여 분류한다. 실험결과, 기존 PSO 방법에 비해 개선된 방법이 평균적으로 앉기 1%, 걷기 7%, 서기 7%의 개선된 결과를 얻었다.