• Title/Summary/Keyword: Bifurcation Phenomenon

Search Result 45, Processing Time 0.029 seconds

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

A Study on the Bifurcation Characteristics of Hybrid Cable Domes under Axisymmetric Load (축대칭 하중을 받는 Hybrid 케이블 돔의 Bifurcation 특성에 관한 연구)

  • 김승덕;백인성;김형석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.277-284
    • /
    • 2003
  • One of important problem, in large space structure, is to overcome the self-weight of roof structure. This problem can be solved with using tension members effectively. Thus the rapid progress of hybrid structure, that makes effective use of the means of settling, has a good effect on realizing the large space. These systems of hybrid structure have the advantages of light weight and its own internal redundancy, but are occurred unstable phenomenon such as bifurcation or snap-through buckling, when the load level is come to the critical point. Among the hybrid structure, cable dome is shown the strong nonlinearity of unstable phenomenon in accordance with the external force. Therefore, the purpose of this study is to analyze and verify comparatively the unstable phenomenon of the Geiger and Flower type cable dome structures under axismmetric load.

  • PDF

Design of Superconducting Current Leads Considering Bifurcation Characteristic (분지 특성을 고려한 초전도 전류도입선 설계)

  • 설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 1999
  • The stability of high-temperature superconducting current leads for cryogenic devices are investigated. By assuming full transition from superconducting state to normal state at a transition temperature, the HTS current at a transition temperature, the HTS current lead shows bifurcation phenomenon. There is a bifurcation shape-factor, HTS leads have three steady state. Below the bifurcation shape-factor, the superconducting current lead is unconditionally stable, because there exists only one steady-factor HTS current lead is conditionally stable depending on the shape and intensity of disturbance.

  • PDF

Localization Analysis of Concrete using Bifurcation Theory (분기이론에 의한 콘크리트의 국소화 해석)

  • 송하원;우승민;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.353-358
    • /
    • 1998
  • The strain localization is a discontinuous phenomenon that addresses the formation of jumps of the field variables across a singularity surface. It has become widely accepted that the localization may occur as the result of discontinuous bifurcation which corresponds to the loss of ellipticity of the governing differential equations for elasto-plastic continua. In this paper, condition for strain localization in concrete based on bifurcation theory is studied and localization tensor analysis algorithm is employed to determine the directions of localization of deformations in concrete. By applying a plasticity model of concrete into the algorithm, localization analysis is performed concrete under uniaxial tension, pure shear and uniaxial compression.

  • PDF

Numerical analysis for Bifurcation phenomenon in a Two dimensional wall-driven cavity flow (2차원 벽구동 캐비티유동 분기현상의 수치해석)

  • Cho Ji Ryong;Hong Sang Pyo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-122
    • /
    • 2000
  • 본 연구에서는 2 차원 벽구동 캐비티 유동에 의하여 나타나는 이력효과에 의한 분기(Bifurcation)현상을 전산유체기법을 사용하여 연구하였다. 캐비티는 북쪽과 동쪽벽이 움직일 수 있고, 다른 두 벽은 고정되어있는 구조이다. 실험은 Reynolds 수 100 에서 1000까지 증가시켜가면서 북쪽벽과 동쪽벽을 동시에 가속 시켜 정상상태에 이르게 한 경우와 북쪽벽이 먼저 가속되어 정상해에 이른 후 동쪽벽을 나중에 가속하여 재차 정상상태에 이르게 한 경우를 비교하였다. 그 결과 Reynolds수가 약 200이상부터 벽에 작용하는 항력, 유량함수의 값, 재부착점등이 분기현상을 나타냄을 확인하였다.

  • PDF

Voltage Stability Analysis using Bifurcation Theory (Bifurcation 이론을 이용한 전압안정도 해석)

  • Kim, Si-Jin;Choi, Jong-Yun;Ahn, Hyun-Sik;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.228-230
    • /
    • 1997
  • Recently, as power systems become large and complicated, chaos theory has been introduced to analyze their nonlinear characteristics. In this paper, voltage collapse phenomenon is more accurately analyzed using bifurcation theory of chaos. Chaotic behaviors has been observed in computer simulation for a simple power system over a range of loading conditions. Besides existence of voltage collapse point in critical value, operation of power system in Hopf window can be the cause of voltage collapse.

  • PDF

A Study on Stable-Unstable Behavior in Concrete (콘크리트의 안정-불안정 거동에 관한 연구)

  • 송하원;전재홍;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.459-465
    • /
    • 1996
  • This paper is about unstable behavior in concrete during the localized deformation and the crack growths in concrete. By modeling the strain localization phenomenon of concrete, the stability condition of the localization is obtained and analyzed. And the stability and bifurcation condition of crack growths in two parallel cracks under different loading conditions are derived and discussed.

  • PDF

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.