Purpose - In Korea, general super markets have a great impact on the market performance of traditional markets. We propose a modified two stage DEA model for evaluating the performance of traditional markets in Incheon, Korea by identifying the influence of external environmental factors including the presence of general super markets as non-discretionary variables in DEA. Research design, data, and methodology - After obtaining bias-corrected estimates of original DEA efficiency scores using the input and output data of 49 traditional markets, we regress them on several external environmental factors by bootstrap-truncated regression. Results - We obtain bias-corrected efficiency scores from the original DEA efficiency scores by bootstrap and among the five environmental factors, the residential population and the presence of general super markets or SSMs can be considered as the driving forces influencing bias-corrected efficiency scores, positively and negatively, respectively. Conclusions - When DEA efficiency scores tend to be overestimated, we need to use a biased-corrected efficiency score by bootstrap. It is important to note that the efficiency of traditional markets can be largely influenced by external environmental factors such as the presence of general super markets or SSMs that traditional markets can not control. Therefore, it is desirable to consider such environmental factors appropriately for a reasonable performance evaluation.
Purpose: This study aimed to identify the relationships among disease severity, anxiety, depression, social support, unpleasant symptoms and self-care among patients with atrial fibrillation based on the unpleasant symptom theory, and to examine the mediating effects of unpleasant symptoms. Methods: A cross-sectional study was conducted. The participants were 216 patients with atrial fibrillation who were being followed up on an outpatient basis at a university hospital in Seoul. Data were collected from November 1, 2020 to June 30, 2021, using self-report questionnaires. Data were analyzed using IBM SPSS/WIN 27.0 and PROCESS macro with 95% bias-corrected bootstrap confidence interval(CI). Results: The average age of participants in this study was 66.0years. Disease severity (β=10.19, p<.001) and depression (β=1.53, p<.001) had significant positive relationships with unpleasant symptoms. Also, unpleasant symptoms (β=-0.03, p=.006) had a negative relationship with physical activity, which is a subscale of self- care. Social support (β=0.06, p<.001) was positively related with physical activity. Unpleasant symptoms showed a mediation effect in the relationship between disease severity and physical activity (Bias corrected bootstrap CI -0.65, -0.04). Depression had an indirect effect on physical activity that was mediated by unpleasant symptoms (Bias corrected bootstrap CI -0.11, -0.00). Conclusion: The findings of this study suggest that integrated strategies including physical, psychological, and social factors should be considered to promote self-care in patients with atrial fibrillation.
The choice of input distribution in quantitative risk assessments modeling is of great importance to get unbiased overall estimates, although it is difficult to characterize them in situations where data available are too sparse or small. The present study is particularly concerned with accommodation of uncertainties commonly encountered in the practice of modeling. The authors applied parametric and non-parametric bootstrap simulation methods which consist of re-sampling with replacement, in together with the classical Student-t statistics based on the normal distribution. The implications of these methods were demonstrated through an empirical analysis of trade volume from the amount of chicken and pork meat imported to Korea during the period of 1998-2005. The results of bootstrap method were comparable to the classical techniques, indicating that bootstrap can be an alternative approach in a specific context of trade volume. We also illustrated on what extent the bias corrected and accelerated non-parametric bootstrap method produces different estimate of interest, as compared by non-parametric bootstrap method.
Communications for Statistical Applications and Methods
/
제3권3호
/
pp.291-297
/
1996
In this paper, we propose the jackknife estimator and the bootstrap estimator of Gini index of the two-parameter exponential distribution when the location parameter $\theta$ is unknown and the scale parameter $\sigma$is known. Sinilarly, we propose the bias location parameter $\theta$ and the scale parameter $\sigma$ are unknown. The bootstrap estimator is more efficient than the other estimators when the location parameter $\theta$is unknown and the scale parameter $\sigma$ is known, and the bias corrected estimator is more efficient than the MLE when both the location parameter $\theta$ and the scale parameter $\sigma$are unknown.
The purpose of this study is to investigate production efficiency of Oceans and Fisheries Human Resources Development Programs Efficiency using Bootstrap-DEA. The study extracts 33 officials curriculum, 11 fisheries managers curriculum for its analytical. First, the study estimates technical, pure technical, and scale efficiency of each curriculums based on traditional DEA under the assumption of CRS and VRS. 8(official 7, managers 1) curriculums are identified as efficient DMUs under the CCR-model, and 13(official 10, managers 3) under the BCC-model. We provide inputs that allow inefficient curriculum to be efficient DMUs on a production frontier, and a reference set for their bench-marking. Second, rank test, Wilcoxon-Mann-Whitney test to find a statistical significance of heterogeneity existing in efficiences between Bootstrap-DEA tenical vs Bootstrap-DEA pure technical was no significant difference. We have identified that G10, 11, 12 13, 25, 31, 33, 39 curriculums are the most efficiently produced in the technical and pure technical efficiency. Also we managed to measure the inefficiency which exists in efficiently produced curriculums when estimating the bias corrected efficiency scores. In Technical efficiency, Operation and facility was significant at the 10%. In Pure technical efficiency, facility was significant at the 10%.
The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.
Communications for Statistical Applications and Methods
/
제6권2호
/
pp.621-634
/
1999
Consider the several methods of constructing interval for relative ration from two independent binomial samples. The special interests are gives in the cases of low rates and small samples. bias-corrected and accelerated bootstrap method is proposed to overcome are the non-efficiency of current methods based on asymptotic resuts. Simulation studies are presented to demonstrate the performance of the proposed method.
This study measures the managerial efficiency of Korea's 14 public enterprises using bootstrap DEA in 2013. In addition, it examines the factors that affect on the bootstrap bias-corrected efficiency using truncated regression analysis. The results and implications of this study are as follows. First, using bootstrap DEA model analysis, the results showed that the mean technical efficiency was 0.3182, the mean pure technical efficiency was 0.4994 and the mean scale efficiency was 0.6585. The main cause of technical inefficiency was due to pure technical inefficiency. Second, rank test between technical efficiency of general DEA model and bootstrap DEA model was no significant difference under CRS and VRS assumption. Third, the main cause of the inefficiency in 11 DMUs among 14 DMUs were mainly due to the pure technology and three DMUs were because of the scale efficiency. Finally, in the truncated regression analysis, cost of labor, profit, sales, return of equity, and the number of employees appeared as factors affecting the scale efficiency at the 10% significance level.
Kim In-Young;Park Su-Bum;Kim Byung-Soo;Park Tae-Kyu
The Korean Journal of Applied Statistics
/
제19권1호
/
pp.1-12
/
2006
The aim of this study is to analyse a survey data on the number of charitable donations using a mixture of two Poisson regression models. The survey was conducted in 2002 by Volunteer 21, an nonprofit organization, based on Koreans, who were older than 20. The mixture of two Poisson distributions is used to model the number of donations based on the empirical distribution of the data. The mixture of two Poisson distributions implies the whole population is subdivided into two groups, one with lesser number of donations and the other with larger number of donations. We fit the mixture of Poisson regression models on the number of donations to identify significant covariates. The expectation-maximization algorithm is employed to estimate the parameters. We computed 95% bootstrap confidence interval based on bias-corrected and accelerated method and used then for selecting significant explanatory variables. As a result, the income variable with four categories and the volunteering variable (1: experience of volunteering, 0: otherwise) turned out to be significant with the positive regression coefficients both in the lesser and the larger donation groups. However, the regression coefficients in the lesser donation group were larger than those in larger donation group.
Purpose: This study aimed to identify the relationship between workplace violence and turnover intention, and the mediation effect of resilience on the relationship in hospital nurses. Methods: This was a cross-sectional study. A total of 237 registered nurses were recruited from three hospitals in South Korea from April to May 2019. Participants were invited to complete self-reported questionnaires that measure workplace violence, turnover intention, resilience, and demographic information. The data obtained were analyzed using multiple regression and a simple mediation model applying the PROCESS macro with 95% bias-corrected bootstrap confidence interval (5,000 bootstrap resampling). Results: After controlling demographic covariates, workplace violence significantly accounted for the variance of turnover intention. It was also demonstrated that resilience partially mediated the relationship between workplace violence and turnover intention in hospital nurses. A 73.8% of nurses had experienced workplace violence (such as attack on personality, attack on professional status, isolation from work, or direct attack). Conclusion: Workplace violence directly influences turnover intention of nurses and indirectly influences it through resilience. Therefore, hospital administrators need to develop and provide a workplace violence preventive program and resilience enhancement program to decrease nurses' turnover intention, and leaving.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.