• 제목/요약/키워드: Bessel inequality

검색결과 11건 처리시간 0.016초

On Bessel's and Grüss Inequalities for Orthonormal Families in 2-Inner Product Spaces and Applications

  • Dragomir, Sever Silverstru;Cho, Yeol-Je;Kim, Seong-Sik;Kim, Young-Ho
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.207-222
    • /
    • 2008
  • A new counterpart of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces is obtained. Applications for some Gr$\"{u}$ss inequality for determinantal integral inequalities are also provided.

COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

  • Qi, Feng;Zhang, Xiao-Jing
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권2호
    • /
    • pp.141-145
    • /
    • 2014
  • In the paper, by directly verifying an inequality which gives a lower bound for the first order modified Bessel function of the first kind, the authors supply a new proof for the complete monotonicity of a difference between the exponential function $e^{1/t}$ and the trigamma function ${\psi}^{\prime}(t)$ on (0, ${\infty}$).

BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES

  • Makasu, Cloud
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1211-1217
    • /
    • 2019
  • Let $0<{\alpha}<{\infty}$ be fixed, and let $X=(X_t)_{t{\geq}0}$ be a Bessel process with dimension $0<{\theta}{\leq}1$ starting at $x{\geq}0$. In this paper, it is proved that there are positive constants A and D depending only on ${\theta}$ and ${\alpha}$ such that $$E_x\({\exp}[{\alpha}\;\max_{0{\leq}t{\leq}{\tau}}\;X_t]\){\leq}AE_x\({\exp}[D_{\tau}]\)$$ for any stopping time ${\tau}$ of X. This inequality is also shown to be sharp.

TURÁN-TYPE INEQUALITIES FOR GAUSS AND CONFLUENT HYPERGEOMETRIC FUNCTIONS VIA CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

  • Bhandari, Piyush Kumar;Bissu, Sushil Kumar
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1285-1301
    • /
    • 2018
  • This paper is devoted to the study of $Tur{\acute{a}}n$-type inequalities for some well-known special functions such as Gauss hypergeometric functions, generalized complete elliptic integrals and confluent hypergeometric functions which are derived by using a new form of the Cauchy-Bunyakovsky-Schwarz inequality. We also apply these inequalities for some sample of interest such as incomplete beta function, incomplete gamma function, elliptic integrals and modified Bessel functions to obtain their corresponding $Tur{\acute{a}}n$-type inequalities.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.