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ON GENERALIZED EXTENDED BETA AND
HYPERGEOMETRIC FUNCTIONS

SHOUKAT ALI, NARESH KUMAR REGAR, AND SUBRAT PARIDA*

Abstract. In the current study, our aim is to define new generalized
extended beta and hypergeometric types of functions. Next, we me-
thodically determine several integral representations, Mellin transforms,
summation formulas, and recurrence relations. Moreover, we provide
log-convexity, Turdn type inequality for the generalized extended beta
function and differentiation formulas, transformation formulas, differen-
tial and difference relations for the generalized extended hypergeometric
type functions. Also, we additionally suggest a generating function. Fur-
ther, we provide the generalized extended beta distribution by making
use of the generalized extended beta function as an application to statis-
tics and obtaining variance, coefficient of variation, moment generating
function, characteristic function, cumulative distribution function, and
cumulative distribution function’s complement.

1. Introduction and Preliminaries

For the sake of brevity, we shall employ the following notation [14] estab-
lished by Carlson [3, p.33] throughout this study:

Cs :={z€C : R(z) >0},
Css :={y,z€ C : R(y) > R(2) > 0},
Cs_:i={z€C:R(2) > —1},

where the symbol C denotes the set of complex numbers.
We begin by recalling Euler’s beta function B(u,v) (see [10, 25])

St (1 —trtdt, (p,v € Cs)

(L1) Blu,v) = , i
Tt (n,v € C\ Zy),
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where I'(z) is the familiar gamma function such that (see [10, 25])
oo

(1.2) I'(2) ::/ e "t*tdt (2 €Cs).
0

Here and throughout the paper, Rar, N and Z; denote the sets of non-negative
real numbers, positive integers and non-positive integers, respectively.

The Gauss’ hypergeometric function o F;(d,7v;¢; z) and the Kummer’s con-
fluent hypergeometric function 1 Fy(y;&;2) = ®(v;&; 2) are recalled here (see
[10, 25, 26]):

(1.3) 2F1(5,7;£;Z)—Z(5)(’f§)(7)" %T
n=0 n :

(Jz|< L;0,7 € C;€ € C\ Zy ),

(1.4) 1P (1362) = ®(13652) = ) T 27

n=0
(2,7 € G e C\Zy),
where (¥),, (for 9 € C) is the Pochhammer symbol defined by (see [10])
1, (n=0),
1.5 ), 1=
(1.5) @) {19(19+1)...(19+n1), (n €N).

Additionally, here we recall the integral representations of 2 F;(4,v;§;2) and
1F1(7;€; 2) (see [10, 25, 26])

(1.6) 211(6,7;&52) = m /01 O =) T (1= 2t) 0t
(§,v€Cosslarg(l —2)|[<m—€ (0<e<m)),
and
(L7)  1Fi(1:62) = ®(1:62) = m /Olt”_l(l — )t e dt
(€, 7€Css).

The extension of the Beta function was presented by Chaudhry et al. ([4, 5])
in 1997, which is as follows:

(1.8) B(u,v;p) = /O 1= 1) exp (t(l_ft)) dt (peCs).

By making use of B(u,v;p), defined in (1.8) Chaudhry et al. [6] extended
the classical hypergeometric function and the confluent hypergeometric func-
tion as follows:

o0

(1.9) F,(0,7;&2) = Z B(’YB‘&”’;_V')WP) (6)n =

n=0
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(p 2 0’ |Z|< 1’ 537 € C>>)a

and

(1.10) Dy(vi62) = B(VBﬂ(Lng&_—g;p) %’:

n=0

(p=>0;¢v€eCss).

Further, in 2014, Choi et al. [10] proposed a further extended Beta function
as:

B(/L7l/;p7 (J) = /0 t“_l(l - t)V_l exp <_p _ q) dt
(min{R(x), R(v)} > 0; min{R(p), R(q)} > 0).

(1.11)

They have studied various integral formulas, properties, summation formulas,
Mellin transforms, recurrence type relations of B(u,v;p,q) in a systematic
manner. They have also presented connections of B(u, v; p, ¢) with other special
functions.

Choi et al. [10] have proposed an extension of the extended confluent hyper-
geometric function and the extended Gauss’ hypergeometric function through
the use of B(u,v;p,q)

oo

(1.12) F,q(0,7:&2) = Z B(V;(:’ g_z;)p’q) (6)n =

n=0

(p,g€Cs, |2|< 15 6,7 €Css),

and

o0

Z B(y+n,&{—vp,q) 2"

B(v, £ —7) n!

(1.13) Dy q(vi652) =

n=0

(p.g € Cs; &,veCss).

Extensions and generalizations of several hypergeometric type higher tran-
scendental functions have been studied by various authors, for example, (see
1,7, 8,9, 15,17, 18, 19, 20, 21, 22, 23]).

In this paper, our aim is to systematically study the introduction of a new
generalized extended Beta function and establish its various properties. These
include integral representations, Mellin transforms, summation formulas, and
log convexity. Additionally, as an application, we formulate a generalized ex-
tended Beta distribution. Moreover, we present generalized extended hyperge-
ometric functions along with their various properties.
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2. Generalized Extended Beta Function and its Properties

Definition 2.1. For min{R(x), R(v)} > 0; min{R(p), R(¢)} > 0 and o, €
Cs_, the extended Beta function Bq;, (1, v; p;q) has a new generalized exten-
sion that is defined as follows:

(2.1) B (1, v3p3q) = /01 =11 — t) "B, <_p> S, ( —4 )dt.

t 1-1¢
Here in (2.1), E,(z) is Mittag-Leffler function defined by (see [28, p.255,
Eq. (3.1)]):
o0 Zn
2.2 E.(z) = —_— C, Cs_),
( ) (Z) T;)F(an—i—l) (ZE ac s )

and S, (z) is Bessel-Struve Kernel function given as follows (see [2, 12, 13, 24]):

0 m+1 Lm
23 s,="0E) ST
m=0

— C Cs_).
VT m/2+n+1) m! (zeCnels)
Obviously, for p = 0 = ¢ in (2.2) and (2.3), we have E,(0) = 1 = S,,(0);
afterward, (2.1) reduces to (1.1), which is the standard Beta function.
For =1 and z = —p/t in (2.2), we get (see [28, p.256, Eq.(3.2)])

(2.4) E: (‘tp) — P/t
Similarly, for n = 5! and z = % in (2.3), we have
¢\ _ =

Now for @ =1 and n = 5*; from (2.4) and (2.5), the equation (2.1) reduces to
(1.11).

2.1. Integral Representations of B,.,(u,v;p;q)

Lemma 2.2. The following integral formula for Mittag-Leffler function
holds true:

. — t'T(b) (1 — b)
2. b—1 -p el Sl Sl
(20 [ () =St
where a, b€ C, p > 0 and a € Cs.

Proof. The following integral formula we have (see [28, p.273, Eq. (3.119.)])
is
R INGRNEE)!
2. VIR, (— = —— <
(2.7) /O P Ba(=M)dp = Sy

Substituting A = 1, we obtain the result of (2.6). O
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Lemma 2.3. The following integral formula for Bessel-Struve Kernel func-
tion holds true:

© g\, (-0 T(T (5 T +1)
(2:8) /0 q ISn(l_t)dq 7 N

wheren, c€ C, ¢ > 0, and n € Cs.
Proof. The integral representation of S, (—z) we have (see [2, p.5, Eq.(2.1)])

is

29) S,(-9) = o= roe ) [ eptea

Taking transformation of z — zq and integrating with respect to ¢ having limit
from 0 to oo, we get

/ ¢~ 'Sy (—2q)dq
0

— /OOO ¢ { \Qf II:EZI 1)) / (1—2)73 e_zqtdt} dg.

Since the uniform convergence of the above integral ensures that the double
integrals’ order can be interchanged, we can ascertain

/ ¢~ 'S, (—2q)dg
0

e I

Applying the well-known Gamma function formula (see [11, 16, 24])

o0
L@t = [ a (6.5 Cs)
0
to the above integral expression, then solving the integration, we obtain

= e _ 1 T(T(*z%) T(n+1)
(2.10) /0 q Sn(_ZQ)dQ—ZCﬁ To—tr1)

our result in (2.8) is obtained. O

By substituting z = ﬁ7

Theorem 2.4. The following integral formula holds true:

/ / P15 By (1, v s )

I(1-b)T()T (55°) T(n+1)
fr(lfab) (n—35+1)

(p,q,b,c € Cs; (p+0),(v+c)€Csia,neCs).

(2.11)

B(p+b,v+c)
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Proof. By multiplying p®~! ¢°~! on each side of (2.1) and integrating the

resultant identity with respect to p and ¢ (0 < p,q < ), we obtain

(2.12)
/ / bt q lBan(NaV biq )
:/ / plge! {/ 11— t)""IE, <_p> S, (‘q )dt} dp dg.

The order of integration is guaranteed to be switched by uniform convergence
of the integral. We therefore get

e} o) 1

/ / pb*lqcleam(u,V;p;Q)=/ 1=t

0 0 0
. b—lE ;p / c—1 —q )
{/Op atdpoq S”l—tdth

By using (2.6) and (2.8) in above integral, we get

/ / blclB ,n(ﬂa”p7 )

CTOTA =BT (59 T +1) (1, o
VAT (1 —ab)T( _§+1) /Ot“’ Y1 —yrreTlat

_TOIrA-nTET (5%) Tn+1)

- ﬁF(l—ab)F(_§+1) B(p+b, v+c).

O

Remark 2.5. The special case « = 1 and n = 5+ of (2.11) and then

b =1 = c in the same equation reduce to two corresponding results in Choi et
al. [10].

Theorem 2.6. Several integral representations for Ba., (i, v; p; q) are valid
as follows:
(2.13)

Bowm (1, vipi q) = 2/2 (cos® 1 0) (sin® " 0) Eq(—psec® 0)S, (—q csc? 0) db;
0

214) Buluvinia) = [ s B [p“gj Sﬂ Syl-a(1+ ¢)) d

(2.15)
Baw(p,vip;q) = 21*“7”/

-1

1

_ _ —2p —2q
pn—1 o v—1 .
(o -0 B [ 2] s, [ 2] ap
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g
B (i vipia) = (g — )1 /f (o — " g — g

s = [ s S5 e

(paq7/’[/7y S (C>§04777 S (C>—)'

Proof. With the transformations ¢ = cos?6, t = 1+s0’ t = H—“’ and t =

;of_; in equation (2.1), the equations (2.13), (2.14), (2.15), and (2.16) can be
obtained, respectively. O

Remark 2.7. The corresponding result in [10] is obtained by reducing the
integrals in Theorem(2.6) to the specific cases « =1 and n = _71 Next, if we
assume p = ¢, the integrals in Theorem(2.6) reduce to the equivalent results in
[5] following &« = 1 and n = *71 Additionally, it can be deduced with ease that
the integrals in Theorem(2.6) yield certain established formulas for the Beta
function in the particular situation p =0 = gq.

2.2. Mellin Transforms of By, (1, v;p;q)

Theorem 2.8. With respect to Ba., (i, v;p; q), the following Mellin trans-
formation formula is valid:

(2.17)

itico peatico P4y T(1 — z) T(y) T (1 y) L(n+1)
B‘“?('u’yp’ 2m / /
€ e

2—100 fr(l_ax)r(n_7+1>
T(p+2)P(v+y)
Fp+xz+v+y)

1—100

p Tq YVdxdy

(p,g€Csie1>0,60>0;,n€Cs).
Proof. With Mellin transform applied to both sides of (2.1), we obtain

(2.18)
M{Bay(1t,v;0;9);p — 2,9 — y}

0o 00 1 —p —q
o T T ) P R AP

The order of integration is guaranteed to be switched by uniform convergence
of the integral. We therefore get

1
MA{Bau(p,vip;9);0 — ,¢ = y} :/ A =t
0

(L @) (e ()

(2.19)
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Now putting the results of (2.6) and (2.8) in (2.19) and then applying the
definition of the Beta function (1.1), we obtain
M{Bay(pvipiq)ip — @, = y}
_T@T =) TET (55) T+ ) M+ 2) (v +y)
VTl —az)T(n—%+1) F(p+z+v+y)
Next, the inverse image of the Mellin transform is applied to the first and last
sides of the above derived identity to prove the equation (2.17). O

2.3. Properties of By, (1, v;p;q)
Theorem 2.9. For B, (11, v;p;q), the following relation is valid:
(2.20) Bom (1 v 93 @) = BV, 1 ¢; p)
(p,geCs;a,neCs).

Proof. Using the transformation ¢ = (1—t) in equation (2.1), one may derive
the result in (2.20). O

Remark 2.10. The special case @ = 1 and = 5} in (2.20) brings about
an equivalent result in Choi et al. [10]. After putting a = 1 and n = _71, taking
p = ¢ in (2.20) brings about an equivalent result in Chaudhry et al. [5]. For
p = 0 = ¢, the result in (2.20) reduces to the symmetric property of the Beta
function.

Theorem 2.11. For every extended beta function B, (1, v;p;q), the fol-
lowing relation is valid:

(2.21) B (s V303 q) = Bam (e + 1,v5039) + Bam (i, v + 1;p; q).
Proof. From (2.1), we have

Bawy (i) = [ e, (F) s (%)
_ /01 N1 — )t + (1 — 1)} B, (_tp) S, (f_qt) dt
= /01 1 — 1) T E, (_tp) S, (1__(115) dt
+/01t“1(1 — )R, (_tp) S, (1__qt) dt

= Bau(1t, V303 @) = Bam(tt+ 1,v59;q) + Baw (1, v + 1 p5 q),
which is our desired result. O
Remark 2.12. The special case « = 1 and n = S of (2.21) brings about

an equivalent result in [10]. Then, after putting o =1 and n = _71, if we take
p = q of (2.21) brings about an equivalent result in [5]. Furthermore, it is seen
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that the identity in (2.21) yields a known relation for the Beta function in the
particular case p =0 = gq.

Theorem 2.13. The following summation formula is satisfied by the ex-
tended beta function Bea.,(1, v;p;q):

> 14
Ban(p, 1 = vipiq) = % Bo(p+ k. 1;:p;q)
k=0

(P,geCs;a,neCs).

Proof. The generalized binomial theorem, we have

1-nr =3 Wk (e,

(2.22)

where (\), = F%’\(j\')k ) is the Pochhammer Symbol.
Therefore (2.1) can be written as

Buauy(i,1 — vipiq) = /Olt“_l(l ) 0N (;p) S, <1_qt> dt
:/1#‘ Y1 —1)"VE, (tp)s,, <1_qt>dt
/‘“[ a(f)S(l—t)dt
[ (2

|
=

o Wk

= Bay(n, 1 —vipiq Z ol 2+ k,15psq).
k=0
We obtain the stated result (2.22). O

Remark 2.14. The special case a = 1 and n = S of (2.22) brings about
an equivalent result in [10].

Theorem 2.15. The following summation formula is satisfied by the ex-
tended beta function Be.,(1, v;p;q):

Buan (i, v3930) = Y Bawy (1t + k, v+ 1;p;q)
k=0

(p,g € Cs;a,neCsl).

Proof. By using the result, we write

(2.23)

o0

(2.24) 1=zt =01-2)"Y 2 (<)

k=0
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Using (2.24) in (2.1), we get

1 oo
P — 1 —1 v k —-p —q
Bog(vipia) = [ 1 {(1—t> S }E () (1)
k=0
q

S oo ()24

= B (1, vip:0) = 3 Basn(i+ kv +1303.0).
k=0

We arrive at the provided outcome in (2.23). O

Theorem 2.16. For every extended beta function B, (i, v;p;q), the fol-
lowing relation is valid:

m

m
(2.25) Bawy(p, —pt—m;piq) = Y <k>Ba;n(M +k,—p—kip;q), (m € No).
k=0

Proof. Substituting v = —p — m in the known result given in (2.21)
Bay (1 v395q) = Bagy (ke + 1,v3p;q) + Bagy (1, v + 153 q),
we arrive at
Boasy(t, = — mip;q) = Bagy (1 + 1, = — m; p; q) + Bagy (1, —p — m + 15 p; q).
Writing this formula recursively with m = 1,2, 3, ..., we obtain
Bay (i =1t = 13p30) = Bagy (1, =110 ¢) + Bagy (e + 1, =1 — 153 q),
Bay(p, =1t = 2303 ) = Bagy (1, =195 ¢) + 2Basy (1 + 1, —p — 1;p; )
+ Bam(p +2, =1 — 2;p;q),
and so on. Taking another step further leads us to (2.25). O
2.4. Log-Convexity and Turan type Inequality of B,.,(u,v;p;q)
Theorem 2.17. {Log-Convexity} The following inequalities hold true:
(2.26) Basy(Ap1 + (1= Npig, v;p30) < Bam (i1, vip50)™ - Bam (p2,v;p3 9)'
(A€(0,1); p1 <posveC,pgeCsya,neCsi),
and
(2.27) By (s Avi + (1= Av2; p;q) < Bag (1t v15030)™ + Basy (1 v23p3q)*

(Ae(0,1); 1 <vy;v€C, p,geCs;a,neCs).
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Proof. For integrals, the Holder’s inequality [27, Eq. (2)] asserts that

- }
[ / |g<t>|’“dt] ,

where, % + % = 1 with 5,k > 1. Applying Holder’s inequality of (2.28) and
substituting = Ay + (1 — A)pe in (2.1), we obtain

Ba;n()‘/ufl + (1 - /\)/L27 vip; q)

- /01 (A1) =1(] _ -1, (_tp) S, (1_(],5) dt
[ @)
11—
R P N | -p 7
e (2 ()
e (@)a ()
[ (224

= Bay(Mx + (1= M2, vi050) < Bawn (i1, vi030)* + Bagn(p2, vipi)' ™
Hence the result (2.26) is obtained. A similar argument off substituting v =
Avi 4+ (1 = Mg in (2.1) proves the result in (2.27). O

b b
(2.28) / F(1) g(t)] dt < [ / F(1) [ dt

1-X

Corollary 2.18. {Turdn Type Inequality} The following inequalities hold
true:

2
M1+ o
(2.29) Bam( 5 Vi q) — Bayn(p1,v305q) - Ba(p2,vip;q) <0

(1 < p2;veC,pgeCs;a,neCs),
and

2
V1 + v
(2.30)  Bay (m ! 5 2 q) — Ba (1, v1305q) - Bagy(,v23p5q) <0

(1 <v;veC,pgeCs;a,nelCs).

Proof. For A\ = % in (2.26) and (2.27), above equations (2.29) and (2.30)
can be obtained, respectively. O

Remark 2.19. The special case @ = 1 and n = 5 of (2.26) brings about
an equivalent result in Luo et al. [14, Eq. (15)]. By setting p = 0 = g, the
well-known result that we get

(2.31) By + (1 = Npsg, v) < B(u1,v)* - B(ug,v)* 2.
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3. A Generalized Extended Beta Distribution

We define an extended beta distribution in statistical distribution theory as
follows:

1 — v— - — :
fv) = Ba;n(um;p;q)t“ =) B, (Tp) Sy (T—qt) , i (0<t<1)
(3.1) 0, otherwise
(p7 q> 0; —00 < W, v <ooja, M€ C>*)'

We next go through a few basic characteristics of the extended beta distri-
bution (3.1).
The k** moment of X, if k is any real number, is provided by
B(x*) = Bay(p+ k. v;p; q)
(3.2) Bey (1, v3039)
(v €R, p,g €RT, o, n € Cs_).

For k = 1, the specific instance of (3.2) produces the mean of our suggested
extended beta distribution, which is:
By, Lvip;
(3.3) B(x) = Banlit Lvipia)
Bain (1, 513 q)
The variance of the distribution we proposed may be represented as follows:
Var(X) = BE(X?) - [E(X)] = E[(X - B(X))?]
(3-4) _ Baw(i+2,v595.0) By (14, v3939) — [Bawn (0 +1,v5p;9))°
[Ban (1t v 3 @)
The ratio of the standard deviation to the mean termed the coefficient of
variation, may be represented as follows for this distribution:

Ba, 2,10 q) Bay (1, V3 13
(3.5) CV = i+ 2,v030) Ban (1 Vipid) 1.
Bam(pu+ 1,v5piq)
About the inception of this distribution, the moment generating function
(m.g.f.), is provided by

oo

tk:

Mx(t) = Y E(XY),
k=0
whence
(3.6) Mx(t) = ;i&v (1 +k,vip;q) ﬁ-
By (pvipsq) &= R

It is possible to compute the proposed distribution’s characteristic function

in the following way:
it o iF1F k
E(e™) = ZWE(X )s

k=0
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whence
o0 .
1 ikt

(3.7) E(e') = B+ k,vipiq)——.
0

Bau (1 vip3q) &= k!

Our suggested extended beta distribution (3.1) has the following cumulative
distribution function:

F(a)=p[X <a] = / f(a)da,
so as to
(38) F(CL) - Ba,n(,u, V,p, q) )

wherein By.p.q (i, v; p; q) represents an incomplete extended beta function as
described by

a
. _ n—1 _ v—1 ;p ;q
(39) Ba;n;a(/h vip; q) /0 t (1 t) Ea ( t ) ST, (1 - t) dat

(p,g€Cs; —0c0 < p,v<oo; a,n €Cs_).

Our suggested distribution’s reliability function, which is just the cumulative
distribution function’s complement, is provided by

R(a)=p[X >a]=1-F(a) = /OO fla)da,

so that

Buassa (1, v; 13
(3.10) R(a) = Baupa vip:0)
Bagn (1,313 q)
However, the (upper) incomplete extended beta function 3a;n;a(u,u;p; q) is
defined by

oo

: D q) = n=l(1 _gyr—1 _p 7
(311) Ba;n;a(uvl/7pa Q) /(; t (1 t) Ea ( n > Sn (1 t) dt

(p, g >0; —c0 < p,v <oo; a,n € Cs_).

4. Generalized Extension of Gauss’ and Confluent Hypergeomet-
ric Functions

Using Basy (1, v;p; q), we extend Gauss’ and Confluent hypergeometric func-
tions as outlined in this section:

e k

e N Bam(V HEE—vipig) o
1) Fom(6,7; & 2305 0) —kz:% Bt =) () 75

(paq Z 07 |‘T|< 1’ fa Y S (C>>; a, 7 € C>—)a
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and

o~ Boy(y+ k. & — vip;q) aF
Do (13 & 2505 q) = — =
(4.2) o kzzo B(v,€ =) k!

(P.g>0;6v€Cos;a,neCs).

The functions Fu;,(d,v; & 2;p5q) and Poypn (7565 25p;q) are used in this con-
text represents a further generalization of the extended Gauss’ hypergeometric
function and a further generalization of the extended Confluent hypergeometric
function, respectively.

4.1. Integral Representations

Theorem 4.1. For p,q > 0, the integral formulae listed below are valid:

1 1
Foi (G, 7v:&mp5q) = B )/ O A=) (= at) 0
0

v, E—
t 1—¢

(Jarg(l —z)[<m & vy € Cosia,neCs).

(4.3)

Proof. By using the definition of (2.1) in place of the By, (v+k, {—7;p; ¢) in
(4.1), it is simple to derive the integral formula

1 v Y —p
Fa;n(&v;f;x;p;q):m/o O 1 —t) T E, <t>

(4.4) o0 k
- xt
S (1_qt) {kzo(6)k( k:') }dt

(|£L"< 17 57 0 € (C>>; a, 1 € (C>*)'

Making use of the extended binomial expansion, (1 — zt)™° = 372 (4) k(“"k#!)k
in (4.4), we find the integral in (4.3).

Theorem 4.2. For p,q > 0, the integral formulae listed below are valid:

(4.5)
1 o0
Foun(6,7:&2305q) = 7/ " 1+ @)l + (1l — )]0
(0, ) Bl =) J, ( )| ( )l
—n(1
E. [M] S, [—q(1 + )] de
)
(larg(l1 —z)[< 7 &, v € Css; a, n e Cs);
2 7 sin® 1w cos22 "1
Fom(0,v;:&25p5q) = y
(4.6) (7T Ra) B(v, £—7) /o (1 — zsin? w)?

- Eo(—pesc® @) S, (—psec® @) dw
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(larg(l —z)|[<m &, v € Cosya,n e Cs);

(4.7)
21-0-¢ ! 1 -1 s
Fon(0,7:& 25059 :7/ 1+4@)" " (1—w)~ " 2—2(14+w)|]”
n( ) By =) _1( )7 ) 2 — a( )]
—2 -2
By |—L s, |—L| dw
14+ w l-w
(larg(1 —z)|<m & v € Cosya, e Cs).
Proof. Setting t = 7=, t = sin? w and t = HTW in (4.3) yields the integrals
in (4.5), (4.6), and (4.7), respectively. O

Note 4.3. A similar argument in (4.2) will establish the integral (4.8). The
integral is,

1 T o
‘I’a;n(%«f;w;p;q):m/o 1711 — g)Er L gnt

= (7))

(p7q Z 0? 57 v E (C>>; a, 1 e (C>_).

(4.8)

Remark 4.4. The integrals in (4.3)-(4.8) have special cases a = 1 and

n= ’71, which result in the corresponding integral representations provided in

Choi et al.[10]. Upon setting a = 1 and n = _71, the corresponding integral rep-

resentations found in Chaudhry et al.[6] can potentially be obtained by taking
p = q of the integrals in (4.3)-(4.8). It is clear that the integral representations
in (4.3)—(4.8) reduce to those integrals in the special case of p = 0 = ¢ [26].

Theorem 4.5. The following relation for F,.,;(0,v;&; x;p; q) holds true:
(4.9)  Fou(6,7:&25059) = Faum(6,7 + 1,6 2p50) + Fam(6,7:6 + 1;23p5.9)
(p,g>0; |z|<1; & v€Cos;a,neCs).
Proof. We have from (4.3)

1 1
Foun(0,7:& @3 p; =7/ A=) A —at) ™0
‘E, <_p> S, <_q > dt
t 1—t
1

=5 s 1771 _ -1 B )
B(%ﬁ—v)/ot (=1 [t+ (1 —8)](1—at)
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:m /Olﬂﬂl(l — )51 = 2t) R, (tp) S, (1 — t) dt

+ m /01 O — )T (1 — at) R, <tp> S, (1 — t) dt

= Fom(0,7:6230:q) = Faum (0,7 + 1:§2305q) + Fou (0,73 €+ 152303 q).
O

Note 4.6. An analogous argument will prove the relation for ®q.,(v; &; 23 p; q)
as:

(4.10) Poin (1162505 q) = Pasn (v + 162505 q) + Pasn (73 € + 13 25p; q)
(P,g>0;¢~veCsssa,neCs).
4.2. Mellin Transforms

Theorem 4.7. For p,q € Cs;¢e1 > 0,62 >0;&, 7€ Css and a, n € Cs _
the Mellin-Barnes integral formulas listed below are valid:

(4.11)

Fom(6,7:&23p1q) =

1 €1+100 €2+1i00
(2mi)2 B(7, € =) Jey—ioo Jer—ico
() T(1 =) T()T (152) T+ 1)
VAT(L—ay)T(n— 5 +1)
F(6, v+ ¢; £+ ¢+ x)p 0 Vdpdip,

B(y+ ¢, &+ —7)

and
(4.12)
1 €1+100 €x+100
Do (v & a3p30) = /
K (27TZ)2 B(’ng ’Y €1 —100 €2 —100

L(@)T(1 =) T(@)T (552) TG+ 1)
VAT(1—ag)T(n— % +1)
D(y+ ¢ E+ ¢+ 5 x)p PqV do dip.

Proof. Multiplying both sides in (4.3) by p®~! ¢¥~!, then integrate the re-
sultant identity from 0 to oo with regard to p and ¢, we obtain

M{Fa;n(&v;&;w;p;Q);¢,w}=/ / P q" T Foy(6,7: & 25 p5 q) dpdg
0 0
(4.13)

1

1
— y—1 DET1 (1 — )9
B, T

[[m @) [oon(2) ol

B(y+ ¢, &+ —7)
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By using of (2.6) and (2.8) in (4.13), we obtain
M {Faiy(0,7: & 230:0); ¢, ¥}
(@) T(1 = ¢) T()T (152) T+ 1)
VATl —ag)T(n— % +1)

1 1
(4.14) ’ m/{) t’Y+¢—1(1 — t)f+w—'y—1(1 _ $t)_5dt

@I —¢) L)L (52) Do +1)
VAT(L—ag)T(n—% +1)
Bly+¢, §+v—)

F(o, v+ ¢; £+ o+ x).

B(’Ya f - ’7)
Now, (4.11) is proved by obtaining the inverse Mellin transforms of each side
of (4.14). An analogous argument will prove (4.12). O

Remark 4.8. The special case « =1 and n =
to corresponding results in Choi et al. (see[10, Eq.

of (4.11) and (4.12) lead

—1
- O

(10.1) and (10.2)]).
4.3. Differentiation Formulas

Differentiating (4.1) and (4.2) with regard to x and using the following
formulas will provide the differentiation formulas for generalized extended hy-
pergeometric functions:

B(y,§—7) =
Theorem 4.9. The differentiation formulas listed below are valid:

(4.15)

%BW+L§—V)WM (st = x(x + D

d 5
%Fam(é,v;f; T;piq) = %Fam@ + 1,y + 1§+ 123p;9),
(4.16)

d’“ () (M

do k (5 77£7$p1 ) Fa;n(6+k7’7+k;f+k3x§p;(ﬁ (kGNO)v

k
(4.17) Do (1: & 23 piq) = ((z) Co(y+ K€+ Ep;q) (k€ Np).

P )
Proof. When we differentiate (4.1) with regard to x, we obtain

d o~ Bam(y +F, € = 7;p;9) A

—F.. 5 P — 1 ) s M 5 )

dr 04771( 777§a‘rap7Q) ; B(’Y, é'_’y) ( )k (k—l)'
This demonstrates (4.15) after substituting k by k+ 1 along with (4.3). Apply-
ing this procedure repeatedly results in the generic form (4.16). An analogous
argument demonstrates (4.17) for @, (7; & 25 p; q). O
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Remark 4.10. The corresponding results of (4.16) and (4.17) are obtained
for the particular cases @« = 1 and n = _71 These are reported in Choi et al.[10].
Chaudhry et al. [6] provided the corresponding outcomes for the particular case
p = q of (4.16) and (4.17) (after setting o = 1 and n = ). It is clear that
the equivalent formulas for hypergeometric functions[26] are obtained in the

special case p =0 = g of (4.16) and (4.17).
4.4. Transformation Formulas

Theorem 4.11. The transformation formulas shown below are valid:

(4.18) Fon(8,7:& 25079) = (1= 2) " Fayy (56 g gt p>
(paq 2 05 |arg(1 - Jf)|< U ga Y S (C>>; «, 7 S C>—)7

and

(4.19) Qo (V& @505 q) = € P (€ — ;& —x5¢3p)

(paq > 0; ga v e (C>>; a,nE (C>*)'
Proof. After substituting ¢ by (1 —t) in (4.3) and using

)
Ty
1—95} ’
we have

PR 1 _5
Fom(0, 13§ 3p39) = %/ A () R (1 4+ t)
, ) Jo 11—z

B(y, E—~
—p —q

= Fo(8,7:&23p¢) = (1—2)° <5£ e 7qp>

1—z(1-t)]=1-2)"° {1 +

We may also establish (4.19) in a same manner. O

Theorem 4.12. For F,.,(d,7v;:&; x;p; q), the following generating function
is valid:
(4.20)

zm _
Z(a)mFam(CS+m77§§§z§p§Q)W =(1-2)7" (5 T ,p,q>
m=0 ’

(P, a=>0;&,7€Cos;a,neCssfz|< ).

Proof. Assume that the left-hand side of (4.20) is ¥. Because of (4.1), we
have

m

\I,:Z:O Z (0 +m)k Bam(y + K, £ = vipiq) @ ] 2"

= B(v,§—7) kL om!
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In the foregoing formula, we can now obtain by using the identity (a).,(a +
m)g = (a)k(a+ k)m as:

B(X ’Y+k§ ,Yapa) N zm xk
U= Z O)k 77%5 - lZ(Hk)mmI] e

m=0

On employing the binomial theorem to the inner summation, we obtain

)k Ba; ’V +k, & —7:p5q) s 2t
U = JL 77 1—=z2 —
Z B(v, § =) ( ) k!

B s kB,anrkE qu) z \"

(1_2) 6Fan<57€» — 7p7Q>

:>\I/:(]_—Z) <5’77€a — 7p7Q>7
which is the right-hand side of (4.20). O

Theorem 4.13. The transformation formulas shown below are valid:
1
(4.21) Foun <5,7;€; 1= —p; q> = 2" Fopy(0,£ — 711 &1 — 54 p)

(paq 2 0; |a‘rg(1 - .T)|< 5 53 Y € (C>>; a, 1 € C>—)’

and
(4.22) (5 V& TP q> = (1+2)° Fay (6, — 7 & —25¢;p)
(p,q=0; Jarg(l+z)|[<m & v€Cosia,neCs).

Proof. Replacing z by (1 — 1) and (H%) in (4.18) yields (4.21) and (4.22),
respectively.

4.5. Differential and difference relations

Theorem 4.14. The subsequent relations are valid:

(4.23) Ay Fay(0,7:&ap59) = ”g Fom(0+ 1,7+ 1;6 + Lia; s ),
and

d 1)
(4.24) %Fa;n(&v;&;w;p; q) = - AsFom (0,716 2305 q).

The difference operator defined by Ay is indicated here as
Ng f(0,..)=FfO+1,..)— f(6,..).
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Proof. The difference operator that is derived from (4.3) yields
Ag Foiy(0,7:&23059) = Fam(§+ 1,7 &2059) — Fam(6,7: 6 25p95.q)

T

' E—v—1 —5—-1
(4.25) :mA ) (1—at)

() ()

By substituting § + 1,7+ 1, and &+ 1 for the parameters §,v, and & in (4.3),
respectively, we obtain

(4.26)
% m /O1 Q=) (1 —awt) 0!
-Eq (‘tp) S, (f_‘{j) dt.

Now using (4.26) in (4.25) seems to yield (4.23). Afterwards, (4.24) is proved
by applying the differentiation formula (4.15) in (4.23). O

Fom(@+ 1,7+ 1;6+ 1;25p59) =

Note 4.15. By using the similar argument of the Theorem 4.14, we obtain
the following relations:

(4.27) YAy Pam (Vi€ + 1525 05.q) + EA¢ Py (Vi & 25p3.9) = 05
and
v
(4.28) oy (¥ &0050) = £ Pasy (Vi€ + 17350) — APy (7362503 0)-

3

Remark 4.16. The special case « = 1 and n = %1 of equations in Theorem
4.14 and Note 4.15 lead to corresponding outcomes provided in Choi et al.[10].
After solving the preceding equations for « = 1 and n = _71, the specific case
p = q yields the findings that are correspondingly reported in Chaudhry et
al.[6].

4.6. Summation formula

Gauss formulated the following summation formula(see[10, Eq.13.1]):

(4.29)
ey LEOTE-6—9) B(,§-6-17) e

In 2014, Choi et al. (see[10, Eq.13.2]) have obtained the following summa-
tion formula:

(4-30) Fp,q((sa 7 1) =

B(P)/a 5*5*%?,‘1)
B(vy, £ =7)

(p,g>0; (E=6—~)eCs).
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Theorem 4.17. The summation formula shown below is valid:

Bam(v, € =9 —7:p;9)
4.31 Fon(0,7:&1;p;q) = 4

(P,q>0; (§-0—7) €Css,a,nelCss).

Proof. The summation formula (4.31) is produced by taking x =1 in (4.3)
and applying (2.1). O

Remark 4.18. To get at (4.30), consider the specific cases a = 1 and
n= _71 of (4.31). After setting « =1 and n = _71, the particular case of p = ¢
of (4.31) yields the analogous result found in Chaudhry et al. [6]. It is clear
that (4.31) for p = 0 = g reduces to (4.29), the Gauss’ summation formula.
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