• Title/Summary/Keyword: Bending Curve

Search Result 331, Processing Time 0.031 seconds

Structural Intensity Analysis of Stiffened Plate Using Assumed Mode Method (Assumed Mode Method를 이용한 보강판의 진동인텐시티 해석)

  • Dae-Seung Cho;Sa-Soo Kim;Sang-Min Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.76-86
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on assumed mode method. To evaluate the convergence of structural intensity according to the number of superposition modes, the power obtained by structural intensity integration over the closed curve containing the excitation source is compared with the power injected into plates. The erect of power reduction due to the material internal loss is evaluated using the intensity around a localized damping point, In addition, the dominant component among internal forces in the power transfer by the bending vibration of plates and the change of power flow due to stiffener are also investigated.

  • PDF

Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity (기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성)

  • Kim, Ki-Tae;Park, Beom-Hee;Kim, Da-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures (단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안)

  • Kim, Jaeyoung;Jeong, Sangseom;Ahn, Sangyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1935-1946
    • /
    • 2013
  • In this study, the behavior characteristics of bent pile structures with varying cross-section was examined through the measured results of field load test. A framework for determining the bending stress is calculated based on the stresses in the circumference of the pile using 3D finite element analysis. It is found that the bending stress near the pile-column joint changes rapidly and fracture zones occurs easily at variable cross-sections in bent pile structures. Also, the optimized column-pile diameter ratio was analyzed through the relationship between the column-pile diameter ratio and lateral crack load ratio. Based on this study, the optimized column-pile diameter ratio can be obtained near the inflection point of the curve between the column-pile diameter ratio and lateral crack load ratio. Therefore, a present study by considering the optimized variable cross-section condition would be improved bent pile structures design.

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • Kim D. H;Hwang W;Park H. C;Park W. S
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.22-27
    • /
    • 2004
  • The objective of this work is to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that is asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials are selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSSFIP elements inserted into structural layers were designed fur satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16{\;}{\tiems}{\;}8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75 (1.875kN) load level, Experimental results were compared with single load level fatigue life prediction equations (SFLPE) and in good agreement with SFLPE. SAS concept is the first serious attempt at integration fur both antenna and composite engineers and promises innovative future communication technology.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

A Study on the Physical Properties and Subjective Evaluation of the PTT[Poly(trimethylene terephthalate)] Fabric (PTT[Poly(trimethylene terephthalate)] 직물(織物)의 물리적(物理的) 특성(特性)및 주관적(主觀的) 평가(評價)에 관(關)한 연구(硏究))

  • Seo, Hyo-Jeong;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.7 no.4
    • /
    • pp.121-128
    • /
    • 2003
  • A new textile material, poly(trimethylene terephthalate) polymer, has been introduced to the textile industry. The structure of PTT is similar to the PET, while the tensile deformation and subsequent recovery property is better than that of PET. In this study, the physical and mechanical properties of textile woven fabrics made of PTT, PET, and nylon 6 yarns as the filling yarn were determined using the Kawabata Evaluation System (KES), including tensile, bending, shearing, compression, and surface related parameters. On top of these measurements, the subjective ratings by evaluators were performed on the fabric samples. From the examination of the stress-strain behavior of the yarn specimens focused on the recovery mode, it was evident that the PTT specimen developed lower stress at 3% elongation. The subsequent recovery curve showed that the PTT has less stress-decay rate than the other specimens, implying that the recovery behavior of the PTT is recommendable for the end-uses including stretchable textile materials, sports wears, etc. The KES bending rigidity(B) value of the PTT sample fabric was lower than that of the PET sample fabric. Subjective evaluation of the fabric samples by the evaluators on the descriptive word pair "soft - not soft" showed similar tendency with the KES B determination of the fabric samples.

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.

Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires (니켈-타이타늄 호선의 상전이 온도 범위와 상전이 행동 비교)

  • Lee, Yu-Hyun;Lim, Bum-Soon;Lee, Yong-Keun;Kim, Cheol-We;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • Objective: The aim of this research was to evaluate the mechanical properties (MP) and degree of the phase transformation (PT) of martensitic (M-NiTi), austenitic (A-NiTi) and thermodynamic nickel-titanium wire (T-NiTi). Methods: The samples consisted of $0.016\;{\times}\;0.022$ inch M-NiTi (Nitinol Classic, NC), A-NiTi (Optimalloy, OPTI) and T-NiTi (Neo-Sentalloy, NEO). Differential scanning calorimetry (DSC), three-point bending test, X-ray diffraction (XRD), and microstructure examination were used. Statistical evaluation was undertaken using ANOVA test. Results: In DSC analysis, OPTI and NEO showed two peaks in the heating curves and one peak in the cooling curves. However, NC revealed one single broad and weak peak in the heating and cooling curves. Austenite finishing ($A_f$) temperatures were $19.7^{\circ}C$ for OPTI, $24.6^{\circ}C$ for NEO and $52.4^{\circ}C$ for NC. In the three-point bending test, residual deflection was observed for NC, OPTI and NEO. The load ranges of NC and OPTI were broader and higher than NEO. XRD and microstructure analyses showed that OPTI and NEO had a mixture of martensite and austenite at temperatures below Martensite finishing ($M_f$). NEO and OPTI showed improved MP and PT behavior than NC. Conclusions: The mechanical and thermal behaviors of NiTi wire cannot be completely explained by the expected degree of PT because of complicated martensite variants and independent PT induced by heat and stress.

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.