• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.041 seconds

A Detection of Behavior and Emotion for Companion animal using AI (AI 기법을 이용한 반려동물의 행동 및 감정 탐지)

  • Lee, Jeong-Woo;Lee, Ha-Rang;Shin, Dong-Jin;Weon, IL-Yong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.580-582
    • /
    • 2022
  • 본 본문은 영상을 통해 반려동물의 행동과 감정을 인식하는 연구이다. 이러한 연구는 반려동물과 인간의 삶을 향상시키는데 도움을 줄 수 있다. 제안된 시스템의 유용성은 실험을 통해 검증하였고, 어느 정도 의미 있는 결과를 얻을 수 있었다.

Design of pet abnormal behavior detection through sensor data augmentation based on GAN (GAN 기반 센서 데이터 증강을 통한 반려동물 이상행동 탐지 설계)

  • Kim, Hyungju;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.665-666
    • /
    • 2022
  • 반려동물의 이상행동 탐지를 위한 센서 데이터를 수집하는 과정에서 발생하는 시간과 비용의 문제로 인해 데이터 증강이 요구되고 있다. 본 논문에서는 통계적 변형과 GAN 기반의 데이터 증강을 통해 반려동물의 정상행동과 이상행동으로 분류하는 방법을 제안한다. 통계적 변형은 회전, 순열, 조합 등을 이용하며, GAN을 통해 원본 데이터에 노이즈가 포함된 유사한 데이터를 생성한다. 증강된 모든 데이터는 원본 데이터와 함께 학습 데이터로 사용한다. 최종적으로, LSTM의 단점을 보완한 Convolutional LSTM 모델을 통해 반려동물의 정상행동 인식의 범주를 넓혀 보다 정확한 이상행동을 인식하고자 한다.

A Development of a Cheating Detection System based on behavior logs and video data analysis (응시자 행동로그와 영상데이터 분석을 통한 온라인 시험 부정행위 방지 시스템 구현)

  • Choi, Sung-Hwan;Kim, Yong-Bum;Ahn, Se-Jin;Seo, Dongmahn
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.703-705
    • /
    • 2022
  • 코로나19 대유행으로 비대면 교육이 보편화되어 온라인 학습과 시험이 교육기관에서 일반화되고 있다. 이러한 급격한 변화로 교육의 공정성 문제와 온라인 시험의 부정행위 문제가 대두되고 있다. 온라인 시험은 대면 시험과는 달리 시험 감독관이 부정행위를 적발하기 어렵기 때문에 응시자의 다양한 환경을 고려하여 정확하게 부정행위를 판별하는 방법이 필요하다. 본 연구에서는 온라인 시험환경에서 응시자의 행동 데이터와 영상데이터를 분석하여 부정행위를 감독관에게 추천하는 시스템을 제안한다. 제안 시스템의 구현을 통해 온라인 시험 환경에서 부정행위를 탐지 기능을 확인한다.

Pet Behavior Detection through Sensor Data Synthesis (센서 데이터 합성을 통한 반려동물 행동 감지)

  • Kim, Hyungju;Park, Chan;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.606-608
    • /
    • 2022
  • 센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.

Enhancing cloud computing security: A hybrid machine learning approach for detecting malicious nano-structures behavior

  • Xu Guo;T.T. Murmy
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.513-520
    • /
    • 2023
  • The exponential proliferation of cutting-edge computing technologies has spurred organizations to outsource their data and computational needs. In the realm of cloud-based computing environments, ensuring robust security, encompassing principles such as confidentiality, availability, and integrity, stands as an overarching imperative. Elevating security measures beyond conventional strategies hinges on a profound comprehension of malware's multifaceted behavioral landscape. This paper presents an innovative paradigm aimed at empowering cloud service providers to adeptly model user behaviors. Our approach harnesses the power of a Particle Swarm Optimization-based Probabilistic Neural Network (PSO-PNN) for detection and recognition processes. Within the initial recognition module, user behaviors are translated into a comprehensible format, and the identification of malicious nano-structures behaviors is orchestrated through a multi-layer neural network. Leveraging the UNSW-NB15 dataset, we meticulously validate our approach, effectively characterizing diverse manifestations of malicious nano-structures behaviors exhibited by users. The experimental results unequivocally underscore the promise of our method in fortifying security monitoring and the discernment of malicious nano-structures behaviors.

App Development for Recognition of Carbon Neutral Behavior using YOLO-based Object Detection Model (YOLO 기반 객체인식모델을 활용한 탄소중립실천요소 인식 앱 개발)

  • Hyunsu Jeung;Daeun Kang;Geonho Kim;Dongkyu Lee;Yuna Oh;Joon-Min Gil;Dongju Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.619-620
    • /
    • 2023
  • 본 논문에서는 탄소중립 중요성이 증대됨에 따라 일상 배출되는 생활 쓰레기 중 자원으로 재활용 할 수 있는 다양한 요소를 탄소중립실천요소로서 정의하고 각 행위를 자동적으로 분류하고자 한다. 딥러닝과 영상처리의 한 분야인 객체 인식 기술을 활용하여, 실시간으로 탄소중립실천요소를 인식하고 재활용 자원의 결과를 수집, 관리할 수 있는 모바일 앱 개발한다. 아울러, 플라스틱컵, 유리컵, 텀블러, 종이컵, 빨대 등 실제 재활용 자원의 이미지에 적용하여 인식을 수행하고 그 결과를 분석한다.

An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models (은닉마코프모델을 이용한 이상징후 탐지 기법)

  • Lee, Eun-Young;Han, Chan-Kyu;Choi, Hyoung-Kee
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

Sport injury diagnosis of players and equipment via the mathematical simulation on the NEMS sensors

  • Zishan Wen;Hanhua Zhong
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.201-215
    • /
    • 2024
  • The present research study emphasizes the utilization of mathematical simulation on a nanoelectromechanical systems (NEMS) sensor to facilitate the detection of injuries in players and equipment. Specifically, an investigation is conducted on the thermal buckling behavior of a small-scale truncated conical, cylindrical beam, which is fabricated using porous functionally graded (FG) material. The beam exhibits non-uniform characteristics in terms of porosity, thickness, and material distribution along both radial and axial directions. To assess the thermal buckling performance under various environmental heat conditions, classical and first-order nonlocal beam theories are employed. The governing equations for thermal stability are derived through the application of the energy technique and subsequently numerically solved using the extended differential quadratic technique (GDQM). The obtained results are comprehensively analyzed, taking into account the diverse range of effective parameters employed in this meticulous study.

A Study on VR Device User Authentication Model based on User Behavior using Anomaly Detection Model (이상 탐지 모델을 활용한 사용자 행위 기반의 VR기기 사용자 인증 모델 연구)

  • Woo-Jin Jeon;Hyoung-Shick Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.856-858
    • /
    • 2024
  • VR 기술의 발전은 다양한 분야에서 사용자에게 몰입감 있는 가상 현실 경험을 제공하지만, VR기기 내부에 사용자의 생체 데이터 및 금융정보와 같은 민감한 정보들이 저장되어 새로운 보안 문제를 야기하고 있다. 이에 따라 PIN, 패스워드 등과 같은 기존의 인증 방식이 VR 기기에 적용되고 있지만 이들은 shoulder-surfing attack 공격 취약하며 VR 환경에서 사용하기에 불편한 인터페이스를 가지고 있다. 따라서 본 논문에서는 이상 탐지 모델을 활용하여 외부 추론 공격에 강인하며 VR 환경에 적합한 사용자 행위 기반의 VR기기 사용자 인증 모델을 구현한다. 특정 task를 수행하는 동안 사용자의 행위 데이터를 수집 및 feature 데이터를 추출하고, 정상으로 라벨링 된 사용자의 데이터로 이상 탐지 머신러닝 모델들을 학습 후 정상 데이터와 비정상 데이터를 이용하여 인증 모델의 성능을 평가하였다. OC-SVM이 87.72%의 F1-score로 세 모델 중 가장 높은 성능을 보임을 확인하였으며, 향후 인증 모델 성능 향상을 위한 계획을 제시하였다.

An Energy-efficient Edge Detection Method for Continuous Object Tracking in Wireless Sensor Networks (무선 센서 네트워크에서의 연속적인 물체의 추적을 위한 에너지 효율적인 경계 선정 기법)

  • Jang, Sang-Wook;Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.514-527
    • /
    • 2009
  • Wireless sensor networks (WSNs) can be used in various applications for military or environmental purpose. Recently, there are lots of on-going researches for detecting and tracking the spread of continuous objects or phenomena such as poisonous gas, wildfires, earthquakes, and so on. Some previous work has proposed techniques to detect edge nodes of such a continuous object based on the information of all the 1-hop neighbor nodes. In those techniques, however, a number of nodes are redundantly selected as edge nodes, and thus, the boundary of the continuous object cannot be presented accurately. In this paper, we propose a new edge detection method in which edge nodes of the continuous object are detected based on the information of the neighbor nodes obtained via the Localized Delaunay Triangulation so that a minimum number of nodes are selected as edge nodes. We also define the sensor behavior rule for tracking continuous objects energy-efficiently. Our simulation results show that the proposed edge detection method provides enhanced performance compared with previous 1-hop neighbor node based methods. On the average, the accuracy is improved by 29.95% while the number of edge nodes, the amount of communication messages and energy consumption are reduced by 54.43%, 79.36% and 72.34%, respectively. Moreover, the number of edge nodes decreases by 48.38% on the average in our field test with MICAz motes.