• Title/Summary/Keyword: Beam Tracking Method

Search Result 65, Processing Time 0.02 seconds

Low-Cost Hologram Module for Optical Pickup by Adjusting Photodiode Package (포토 다이오드 조정방식을 이용한 광 픽업용 저가 홀로그램 모듈)

  • Jeong, Ho-Seop;Kyong, Chon-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • We proposed a new and cost-effective method fer assembling holographic pickup modules without any high resolution vision system. Assembling was accomplished by adjusting photodiode package only, leading to a low cost, holographic pickup module. Focus and tracking error signals were simply determined by comparing spot sizes and by using the 3 beam method, respectively, based on four-sectional holographic optical elements. In experiment, we assembled a hologram module and estimated performance of the proposed method fur a holographic pickup module used in compact disc system.

Motion Analysis of a Translating Flexible Beam Carrying a Moving Mass

  • Park, Sangdeok;Youngil Youm
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.30-39
    • /
    • 2001
  • This paper investigates vibrational motion of a flexible beam fixed on a moving cart and carrying a moving mass. The equations of motion of the beam-mass-cart system are analysed through the unconstrained modal analysis. The exact normal mode solution used in modal analysis correspond to the eigenfrequencies for each position of the moving mass and to the ratios of the weight of the beam-mass-car system. Time solutions of normal modes are also transformed properly according to the position of the moving mass. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  • PDF

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

Effective Beam Structure for Multi-Target Detection and Tracking in the Active Electrically Scanned Array Radar (능동위상배열 레이더에서 다중표적 탐지/추적을 위한 효과적인 빔 구조 연구)

  • Lee, Joo-Hyun;Lee, Seok-Gon;Park, Dae-Sung;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1069-1076
    • /
    • 2014
  • This paper presents an efficient receive beam structure able to search and track the simultaneous bundle targets with the active electrically scanned array radar. One of the characteristic with the active phased array radar is to point toward wanted direction and to forming simultaneously the digital multi-beam. This paper proposes method to detect and track rapidly bundle targets coming to radar using the digital beam forming. The proposed the beam forming method in the paper is evaluated about the angle accuracy of targets via a computer simulation.

A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive (고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법)

  • Ryoo Jung Rae;Moon Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

A Satellite Tracking Method Using Rotation of Sub-Reflector for Naval Vessels Satellite Antenna System (부반사판 회전에 의한 함정용 위성 안테나의 위성 추적 방법)

  • Eom, Kwang-Sik;Park, Myung-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.39-44
    • /
    • 2007
  • In this paper, satellite searching and tracking method for the satellite antenna in naval vessels system are proposed. For fast searching satellite, Wide Range Search(WRS) algorithm is proposed where the signal strength of side-lobe is utilized as well as that of main-lobe. Satellite tracking algorithm to stabilize satellite antenna is based on conical-scanning which is accomplished by the use of the sub-reflector located in front of the focus of the reflector. The sub-reflector rotates about a slightly tilted axis by means of a motor and shapes the antenna beam to utilize stabilization. To show the validity of the proposed method, an experimental example is represented.

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.98-102
    • /
    • 2016
  • The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

Placement of actuator for efficient modal control (효율적 모우드 제어를 위한 구동기 위치 결정법)

  • 노현석;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.47-51
    • /
    • 1993
  • A method of finding the optimal actuator location for efficient control of the modes of interest is presented. The proposed approach relies on certain quantitive measure of degree of controllability based on the controllability grammian. This measure proves to be useful for regulating problem of the undamped system and can be extended to cover the tracking problem of the viscous damped system. The example of the uniform cantilever beam is given to verify the effectiveness of the method.

  • PDF

Analysis of the Antenna Pointing Instability of a Satellite in Spin-Stabilized Injection Mode

  • Kang, Ja-Young;Shin, Kwang-Keun
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.27-41
    • /
    • 1994
  • A new mathematical model to predict the beam pointing instability of a nonconservative two-body satellite system in spinning injection mode has been developed by using Newton-Euler and projection methods. Since the on-axis and null axis of the omni antenna with toroidal pattern beam form a right angle, wobbling of the antenna on-axis is measured by determining the Euler angles which represent the orientation of the satellite's spin axis. Because of the complexity of the system which is a time varying, nonstationary, nonlinear dynamical system, a numerical method is used for the analysis. Computer simulation results present the effects of the mass distribution and internal mass motion on the antenna beam pointing.

  • PDF