DOI QR코드

DOI QR Code

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae (Department of Mechanical Engineering, Myongji College)
  • Received : 2016.08.05
  • Accepted : 2016.08.30
  • Published : 2016.09.30

Abstract

The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Keywords

References

  1. A. A. Tseng, J. Micromech. Microeng. 14, R15 (2003).
  2. S. Reyntjens and R. Puers, J. Micromech. Microeng. 11, 287 (2001). https://doi.org/10.1088/0960-1317/11/4/301
  3. R. Young, Vacuum 44, 353 (1993). https://doi.org/10.1016/0042-207X(93)90182-A
  4. M. J. Vasile, Z N Nassar, and S. Liu, J, Vac, Sci, Technol B 15, 2350 (1997). https://doi.org/10.1116/1.589644
  5. M. J. Vasile, J. Xie, and R. Nassar, J. Vac. Sci. Technol. B 17, 3085 (1999). https://doi.org/10.1116/1.590959
  6. D. P. Adams and M. J. Vasile, J. Vac. Sci. Technol. B 24, 836 (2006). https://doi.org/10.1116/1.2184325
  7. D. P. Adams, M. J. Vasile, and T. M. Mayer, J. Vac. Sci Technol. B 24, 1766 (2006). https://doi.org/10.1116/1.2210000
  8. Y. Fu and N. K. A. Bryan, J. Vac. Sci. Technol. B 22, 1672 (2004). https://doi.org/10.1116/1.1761460
  9. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, E. Platzgummer, and H. Loeschner, Int. J. Precis. Eng. Manuf., 12, 893 (2011). https://doi.org/10.1007/s12541-011-0119-3
  10. H. B. Kim, Micromech. Microeng. 88, 3365 (2011).
  11. H. B. Kim, Micromech. Microeng. 91, 14 (2012).
  12. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Opt. Exp. 15, 9444 (2007). https://doi.org/10.1364/OE.15.009444
  13. I. V. Katardjiev, J. Vac. Sci. Technol. A6, 2434 (1998).
  14. H. B. Kim, G. Hobler, A. Lugstein, and E. Bertagonolli, J. Micromech. Microeng. 17, 1178 (2007). https://doi.org/10.1088/0960-1317/17/6/011
  15. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Nanotechnology 18, 245303 (2007). https://doi.org/10.1088/0957-4484/18/24/245303
  16. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Nanotechnology 18, 265307 (2007). https://doi.org/10.1088/0957-4484/18/26/265307
  17. J. Orloff, CRC Press, 549 (2009).
  18. F. Ziegler, http://www.srim.org , (2003)
  19. J. A. Sethian, Combridge University Press, (1999).
  20. W. Moeller and M Posselt, Dresden, Forschungszentrum Rossendorf , (2002).
  21. L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003). https://doi.org/10.1007/s00339-002-1943-1
  22. J. Pellerin, D. Griffis, and P. Rusell, J. Vac. Sci. B 8, 1949 (1990).
  23. D. Santamore, K. Edinger, J. Orloff, and J. Melngailis, J. Vac. Sci. Technol. B 15, 2346 (1997). https://doi.org/10.1116/1.589643

Cited by

  1. Simulation of Redeposited Silicon Sputtering under Focused Ion Beam Irradiation vol.12, pp.3, 2018, https://doi.org/10.1134/S1027451018030345