This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.
현대사회에서 웹을 통한 정보 제공 서비스가 늘어나면서 병원에서도 홈페이지와 E-mail을 통하여 많은 질문과 상담이 진행되고 있다. 그러나, 이것은 관리자에 대한 업무부담과 답변에 대한 응답시간 지연의 문제가 있다. 본 논문에서는 이런 질의문서에 대한 자동응답시스템의 기초연구로 문서 분류 방법을 연구하였다. 실험방법으로 1200개의 환자질의문서를 대상으로 66%는 학습문서로, 34%는 테스트문서로 활용하여 이것을 NBC(Naive Bayes Classifier), 공통색인어, 연관계수를 이용한 문선분류에 사용하였다. 문서 분류 결과, 기본적인 NBC방법 보다는 본 논문에서 제안한 두 방법이 각각 3%, 5% 정도 더 높게 나타났다. 이러한 색인어의 빈도보다, 색인어와 카테고리간의 연관성이 문서 분류에 더 효과적이라는 것을 의미한다.
본 논문에서는 다중 요인을 고려한 천연 가스 누출 정도 예측을 위해 관련 요인을 포함하는 기상청 자료와 천연가스 누출 자료를 통합하고, 요인 분석을 기반으로 중요 특성을 선택하는 머신러닝 기법을 제안한다. 제안된 기법은 3단계 절차로 구성되어 있다. 먼저, 통합 데이터 셋에 대해 선형 보간법을 수행하여 결측 데이터를 보완하는 전처리를 수행한다. 머신러닝 모델 학습 최적화를 위해 OrdinalEncoder(OE) 기반 정규화와 함께 요인 분석을 사용하여 필수 특징을 선택하며, 데이터 셋은 k-평균 클러스터링으로 레이블을 지정한다. 최종적으로 K-최근접 이웃, DT(Decision Tree), RF(Random Forest), NB(Naive Bayes)의 네 가지 알고리즘을 사용하여 가스 누출 수준을 예측한다. 제안된 방법은 정확도, AUC, 평균 표준 오차(MSE)로 평가되었으며, 테스트 결과 OE-F 전처리를 수행한 경우 기존 기법에 비해 성공적으로 개선되었음을 보였다. 또한 OE-F 기반 KNN(OE-F-KNN)은 95.20%의 정확도, 96.13%의 AUC, 0.031의 MSE로 비교 알고리즘 중 최고 성능을 보였다.
백내장 질환은 노령인구가 증가하고 있는 시점에서 사회, 경제적으로 심각한 문제로 부각되고 있는 질병으로 조기 진단이 이루어진다면 발병률을 크게 줄일 수 있는 질병이다. 본 연구에서는 백내장을 조기 진단하기 위한 예측 모형을 구축하고자 1994년부터 2001년까지 연세대학병원에서 2회 이상 건강검진을 받고 의사진단을 통해 백내장 여부를 확인할 수 있는 30세 이상 남 녀 3,237명에 대한 건강검진 수검 자료를 활용하여 백내장 발생 위험 예측모형을 개발하였다. 모형개발에는 데이터마이닝 기법인 Random Forests를 사용하였고, 기존의 로지스틱 회귀분석, 판별분석, 의사결정나무 모형(Decision tree), 나이브베이즈(Naive Bayes), 앙상블 모형인 배깅(Bagging)과 아킹(Arcing)을 이용하여 그 성능을 비교 분석하였다. Random Forests를 통해 개발한 백내장 발생 예측모형은 정확도가 67.16%, 민감도가 72.28%였고, 주요 영향요인은 연령, 혈당, 백혈구수치(WBC), 혈소판수치(platelet), 중성지질(triglyceride), BMI였다. 이 결과는 의사의 안과검진 정보 없이 건강검진 수검 자료만으로 백내장 질환 유 무에 관한 정보를 70% 정도 예측할 수 있음을 보여주는 것으로, 백내장의 조기 진단에 많은 기여를 할 것으로 판단된다.
현재 국내 유도무기 사격시험의 경우, 유도무기 사격 수량 대비 명중 수량으로 계산된 명중률만을 이용하여 국내 유도무기의 성능을 판단하고 있다. 명중률만으로는 생산된 유도무기 전체의 특성을 표현하지 못하므로 유도무기 사격시험결과에 따라 계산된 명중률을 활용하여 생산된 모든 유도무기의 성능을 판단하기에는 한계가 있다. 다시 말하면, 전력화되어 운용 중인 유도무기 또는 생산중인 유도무기의 명중률을 일정 수준 보장하기 위해서는 유도무기 사격시험 결과에 따라 계산된 단순 명중률보다 신뢰성이 높은 신뢰수준을 산정하는 것이 필요하다. 이에 따라 본 연구에서는 생산 수량이 적고, 고가이며, 유도무기 사격 시험을 수행하기 전에 유도무기 명중 여부 및 성능을 확인할 수 없는 유도무기 사업 특성을 고려하고, 유도무기 사업 특성에 적합한 초기하분포와 베이지안 규칙을 활용하여 최소 사격 수량으로 유도무기 신뢰수준을 산정하는 방법을 소개한다. 또한, 국내 유도무기 사격시험 결과 및 국내외 문헌을 활용하여 국내 유도무기 사격 시험 결과 판정 시 유도무기 성능을 확인할 수 있는 적정 신뢰수준을 제안한다.
Word sense disambiguation is one of the most important problems in natural language processing research topics such as information retrieval and machine translation. Many approaches can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledge-based, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy. The purpose of this paper is to compare three famous machine learning techniques, Snow, SVM and Naive Bayes in Word-Sense Disambiguation on Thai language. 10 ambiguous words are selected to test with word and POS features. The results show that SVM algorithm gives the best results in solving of Thai WSD and the accuracy rate is approximately 83-96%.
In this study, we develope a revised model as well as application of decision problem under ambiguity based on the subjectively weighted linear utility medel. Bayes'rule is used when there are ambiguous probabilities on a decision problem and test information is available. A procedure for assessing the ambiguity aversion function is also presented. Decision problem of chemical corporation is used for an illustration of the application of the subjectively weighted linear utility model using Bayesian approach. We present the optimal decisiond using newly developed model. We also perform the sensitivity analysis to assure ourselves about the conclusion we obtianed on degree of ambiguity aversion due to characterize parameter of subjectively weighted linear utility model.
International Journal of Reliability and Applications
/
제14권1호
/
pp.27-39
/
2013
In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.
Since one texture property(i.e coarseness, orientation, regularity, granularity) for ultrasound liver ages was not sufficient enough to classify the characteristics of livers, we used multi texture vectors tracted from ultrasound liver images and a statistical classifier. Multi texture vectors are selected among the feature vectors of the normal liver, fat liver and cirrhosis images which have a good separability in those ultrasound liver images. The statistical classifier uses multi texture vectors as input vectors and classifies ultrasound liver images for each multi texture vector by the Bayes decision rule. Then the decision of the liver disease is made by choosing the maximum value from the averages of a posteriori probability for each multi texture vector In our simulation, we obtained higtler correct ratio than that of other methods using single feature vector, for the test set the correct ratio is 94% in the normal liver, 84% in the fat liver and 86% in the cirrhosis liver.
Communications for Statistical Applications and Methods
/
제30권3호
/
pp.311-330
/
2023
The present work describes simulation studies to compare the performances in terms of averaged mean squared error of bayesian wavelet shrinkage methods in estimating component curves from aggregated functional data. Five bayesian methods available in the literature were considered to be compared in the studies: The shrinkage rule under logistic prior, shrinkage rule under beta prior, large posterior mode (LPM) method, amplitude-scale invariant Bayes estimator (ABE) and Bayesian adaptive multiresolution smoother (BAMS). The so called Donoho-Johnstone test functions, logit and SpaHet functions were considered as component functions and the scenarios were defined according to different values of sample size and signal to noise ratio in the datasets. It was observed that the signal to noise ratio of the data had impact on the performances of the methods. An application of the methodology and the results to the tecator dataset is also done.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.