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Abstract. In this article, a new model based on the Rayleigh distribution is introduced. 
This model is useful and practical in physics, reliability, and life testing. The 
statistical and reliability properties of this model are presented, including moments, 
the hazard rate, the reversed hazard rate, and mean residual life functions, among 
others. In addition, it is shown that the distributions of the new model are ordered 
regarding the strongest likelihood ratio ordering.  Four estimating methods, namely, 
method of moment, maximum likelihood method, Bayes estimation, and uniformly 
minimum variance unbiased, are used to estimate the parameters of this model. 
Simulation is used to calculate the estimates and to study their properties. Finally, the 
appropriateness of this model for real data sets is shown by using the chi-square 
goodness of fit test and the Kolmogorov-Smirnov statistic.  
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1.  INTRODUCTION 
 

Statistical analysis is a useful tool for obtaining the reliability information of a device 
or process based on a limited number of samples. Sample sets are analyzed referenced to a 
known distribution function. Once a distribution function is assumed, the sample mean 
and variance are used to determine reliability information. A widely used model event that 
occurs in different fields such as medicine and social and natural sciences is the Rayleigh 
distribution (RD). In physics, for instance, an RD is used to study various types of 
radiation, such as sound and light measurements. The RD was originally derived in 
connection with a problem in acoustics, and has been used in modeling certain features of 
electronic waves and as the distance distribution between individuals in a spatial Poisson 
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process. Most frequently, however, an RD appears as a suitable model in life testing and 
reliability theory. For more details on the RD, the reader is referred to Polovko (1968) and 
Johnson et al. (1994). 

In contrast, length-biased (LB) distributions are particular cases of weighted 
distributions. Specifically, if Y is a nonnegative random variable with probability 
distribution function (pdf) )(yfY , then the weighted version of Y with weight function 

)(yw , denoted by wY  and whose distribution is called the weighted distribution, has a pdf 
given by 

 ( )[ ] ,0   ,)( )()( >= y
YwE

yfywyf Y
Yw

                                        (1.1) 

assuming ( )[ ] .0 ∞<< YwE  A particular case of the weighted distributions is obtained 
when we replace yyw =)(  in Eq. (1.1). In this case, wY  is called the size-biased or 
length-biased version of Y , denoted by the r.v. T , which has the pdf expressed as 

,0   ;)( )( >= ttfttf Y
T µ

 

where [ ] .0 ∞<=< TEµ  The distribution of T is the length biased version of the 
distribution of Y . The parameter that corresponds to the mean from the original 
distribution is incorporated in the length-biased density to obtain valid density. Actually, 
the mean is a function of the parameters from the original model. Thus, length-biased 
distribution does not incorporate new parameters and has the same number of parameters 
as the original distribution (cf. Jain et al., 1989). 

LB distributions have been applied in various fields, such as biometry, ecology, 
environmental sciences, reliability, and survival analysis. A review of these distributions 
and their applications is included in Gupta and Kirmani (1995). LB distribution occurs 
naturally in many situations because sometimes it is not possible to work with a truly 
random sample from the population of interest. In particular, in the environmental field, 
Patil (2002) mentioned that observations may fall in the non-experimental, non-replicated, 
and nonrandom categories making random selection from the target population impossible. 
Thus, in this case, model specification and data interpretation problems acquire great 
importance. A way of confronting this problem is by considering observations selected 
with probability proportional to their length. The resulting distribution is called length-
biased distribution, which considers the method of ascertainment by adjusting the 
probabilities of the actual occurrence of events to arrive at a specification of the 
probabilities of those events as observed and recorded. Failure to make such adjustments 
can lead to incorrect conclusions. LB versions for several distributions, such as Weibull, 
inverse Gaussian (IG), Sinh-normal (SN), and Birnbaum-Saunder (BS) distributions, have 
been developed in the literature (cf. Sansgiry and Akman (2001), Boudrissa and Shaban 
(2007), and Leiva et al. (2009)), among others. 

The objectives of this paper are as follows: (i) obtain a new probability model that 
can be used in physics, reliability, and life testing; (ii) provide a comprehensive 
description of the statistical and probabilistic properties of this new model; and (iii) 
illustrate its applicability in different areas. The paper is organized as follows: The density 
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and the moment of the new model are given in Section 2. In this section, we provide the 
reliability function and hazard (reversed hazard) functions and show that the new model is 
ordered regarding the strongest likelihood ratio ordering. Moment estimation, maximum 
likelihood estimation, and Bayesian estimation problems are considered in Section 3. To 
indicate the adequacy of the new model, applications using numerical examples and 
examples with real data are discussed in Section 4. Finally, in Section 5, we provide a 
brief conclusion and remarks regarding current and future research. 

 
 

2. THE NEW MODEL AND ITS RELIABILITY PROPERTIES 
 

Let X  be a random variable with scale parameter 0>θ . The pdf of X  is 

( ) .0 ,0   ,,
2

2 >≥= − θθθ
θ

xexxg x  
The distribution of  X  is called a Rayleigh distribution (RD). Based on the RD, we define 
the following new model. 
 
Definition 2.1.  

A nonnegative random variable T  is said to have a length-biased Rayleigh (LBR) 
distribution if the variable’s density function is given by 

( ) .0  ,0  ;2,
2

22
3 2 >>= − θθ

π
θ

θ

tettf t                                      (2.1) 

For this new model, the notation )(θLBRT ∼  will be used in the sequel.  
 
Interpretation 2.1. 

Suppose that the lifetimes of a given sample of items follow the Rayleigh distribution 
and that the items do not have the same chance of being selected but each one is selected 
according to its life length. Then the resulting distribution does not follow the RD. The 
distribution follows the LBR distribution. 
 
 Interpretation 2.2. 

Suppose that )(θLBRT ∼  and let .)2/( 2TZ θ=  Then Z follows  the
( ) ,12/3 Gamma distribution. 

 
Clearly, ),( θtf  vanishes as 0→t  and .∞→t  The function ( )θ,tf  is easily 

shown to be log-concave, and thus, the distribution is always unimodal with mode at θ
2  . 

The shapes of the pdf for special values of the scale parameter θ  are illustrated in Figure 
1. 
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The positive integer moments are useful for inference and model fitting (cf. Johnson et al. 
(1994, p. 23) and Leiva et al. (2009)). A result that allows us to compute the moments of 
the LBR distribution is given in the following lemma.  
 
Lemma 2.1.  

If ),;( θtLBRT ∼   then the thr  moment is given by 

( ) ( ).2
2

2
2

31

r

r
r

rTE
θπ

++ Γ
=  

 
From the result, the mean and variance are given, respectively, by 

.83)(  and  2)(
2
3

πθ
π

πθ
−

== TVarTE  

The coefficient of skewness 1γ , is defined by 

,3
3

1 σ
µγ =  

where 3µ  is the third moment about the mean and σ  is the standard deviation of the 
distribution. Thus, the skewness of the LBR distribution is given by 

( ) ,
)83(
51622
2
31

−

−
=

π
πγ  

which is independent of .θ  Since 1γ  is positive, then the distribution is skewed to the 
right. This is clear from the plot of the pdf in Figure 1. The coefficient of kurtosis 2γ , is 
defined by  
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,34
4

2 −=
σ
µγ  

where 4µ  is the fourth moment about the mean. In the case of the LBR distribution, we 
have 

( )
,

83
963404 2

2

2 








−
−−

=
π
ππγ

 
and thus, the distribution is leptokurtic since the kurtosis is positive. Let ),(θLBRT ∼  
The reliability function (RF) of T is given by 

.0   ,
2

,
2
321)(),( 2 >






−=>= θθγ

π
θ θ ttTPtF                          (2.2) 

where ( )2
22

3 , tθγ  is the lower incomplete gamma function, which is defined by  

( ) ., 1

0
dxexta xat −−∫=γ  

Let X  and Y  be two nonnegative random variables having distribution functions 

XF  and ,YF  respectively, denote by XX FF −=1  and YY FF −=1  their respective 
survival functions, and Xf  and Yf  are corresponding density functions. The hazard rate 
(HR) function of the nonnegative random variable  X   is  

( ) [ ] ,0 allfor   ,)(log/)( >−= xxFdxdxhX  
and thus, the HR function of LBR distribution is given by 

.
),(2

2),(
2

22
3

2 2
22

3

t
etth

t

T θγπ
θθ

θ

−
=

−

 

The behavior of the HR and the HR average is the same. Since )(tf is log-concave, 
then the HR function )(th  is increasing (see Barlow and Proschan (1975)).  However, in 
replacement and repair strategies, although the shape of the HR function plays an 
important role, the mean residual life (MRL) function of the random variable X , which is 
defined by  

,)(
)(

1)( tdyyfy
tR

tm
t

−= ∫
∞

 

is more relevant than the HR function because the former summarizes the entire residual 
life function, whereas the latter considers only the risk of instantaneous failure at some 
time t. The MRL function of the LBR distribution is given by 

( )
( ) ,

,2
,22),(

2
22

3

2
2

2
3

t
t

ttm −
−
Γ

=
θ

θ

γθθπ
θ  

where ( )2
2,2 tθΓ  is the upper incomplete gamma function, which is defined by  

( ) ., 1 dxexta xa

t

−−∞

∫=Γ  
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Increasing the hazard rate (IHR) implies decreasing the mean residual life (DMRL) 
(Barlow and Proschan, 1975). Therefore, if T  is a nonnegative random variable that 
follows ),(θLBR  then T has the DMRL property. 

Another function called the reversed hazard rate function (RHR) has recently been 
receiving increasing attention in reliability analysis and life testing. Formally, the RHR of 
a nonnegative random variable X  is defined by (cf. Block et al. (1998) and Chandra and 
Roy (2001))  

( )[ ] .0 allfor   ,)(log/)( >= xxFdxdxrX  
The RHR of the LBR distribution takes the form 

( ) ( ).,2
, 2

22
3

2 2
22

3

t
ettr

t

T θγ
θθ

θ−

=
 

 Again, since ),( θtf  is log-concave, then ( )θ,trT  is decreasing. Therefore, we conclude 
that T also has the increasing mean inactivity time (IMIT) property (Kayid and Ahmad, 
2004). 
   Another important tool for judging comparative behavior is the stochastic ordering of 
positive continuous random variables. A nonnegative random variable X  is said to be 
smaller than a random variable Y  in the following: 

i. stochastic order (denoted by YX st≤ ) if ( ) ( )xFxF YX ≤  for all ;x   

ii. hazard rate order (denoted by YX hr≤ ) if )()( xhxh YX ≥  for all ;x  

iii. reversed hazard rate order  (denoted by YX rhr≤ ) if )()( xrxr YX ≤  for all ;x  

iv. likelihood ratio order (denoted by YX lr≤ ) if ( ) ( )xfxf YX /  decreases in x . 
 
 The following implications between the above stochastic ordering are well known (see 
Shaked and Shanthikumar (2007)): 

.YXYXYXYX sthrlrrhr ≤→≤→≤←≤                               (2.3) 
LBR distributions are ordered regarding the strongest likelihood ratio ordering as 

shown in the following result. 
 

Theorem 2.1.  
      Let );( 1θtLBRX ∼  and ).;( 2θtLBRY ∼  If 12 θθ <  then  

).,,( YXYXYXYX strhrhrlr ≤≤≤≤  
Proof. 

First, let ( ) ( )xfxfxg YX /)( =  then  

( ) ( )./)( 212
2

2
3

21
θθθθ −−=

x

exg  
Since 

( ) ( ),/)()]([ 212
2

2
3

2121
θθθθθθ −−−−=

x

exxg
dx
d
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then )(xg  is decreasing in x  for ,12 θθ <  that is, YX lr≤ . The remaining 
statements from the implications (2.3). 

 
 

3. PARAMETER ESTIMATION 
 

In this section, four estimating methods, namely, method of moment, maximum 
likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used 
to estimate the model’s parameters. 
 
3.1 Moments estimate 

In the method of moments estimator (MME), we have to solve the equation 
,...,2,1 ,'' == rm rr µ                                                   (3.1) 

where ∑=
=

n

i
r
ir t

n
m

1
' 1  the sample moment and ( ),' r

r TE=µ  the population moment. Solving 

(3.1), we have 

,
)(

8ˆ
2Tπ

θ =                                                        (3.2) 

 
3.2 Maximum likelihood estimate 

Let nTT ,...,1  be a random sample from the LBR distribution. The likelihood function 
is given by  

( )

.
2

exp 2

,) ,...,| (

2
1

2
1

11

2






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The log likelihood function is given by 

.
2

ln2lnln
2

ln
2

2ln
2

),...,| ( 2
111 i

n
ii

n
in ttnnnntt ∑−∑++−+= ==

θθπθθ  

The maximum likelihood estimator (MLE) of θ  is the solution of the following normal 
equation 

,0
2
1

2
2

1 =∑−+=
∂
∂

= i
n
i tnn

θθθ


 

and thus 

.3
2

1 i
n
i t
n

∑
=

=

θ                                                           (3.3) 

The second derivative of the MLE is 

.
2
3

22

2

θθ
n

−=
∂
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Then the Fisher information is 
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( ) .
2
3

22

2

θθ
θ nEI =








∂
∂

−=


 

If n  is large, MLEs are asymptotically normally distributed with the mean θ  and 
variance of ,θ  that is, 

( ) .),1,0(ˆ)( ∞→→− nasNI
d

θθθ  
A )%1(100 δ−  CI for θ  is given by 

,)(ˆ 1
2/ θθ δ

−± IZ  
where 2/δZ is the standard normal variate. 
 
3.3 Bayes estimates 

If we have a little information about the parameter, then the appropriate prior for this 
case when using Bayes estimation is ( ) ,1

θθπ ∝  where ∝  is the proportionality sign. The 
joint posterior will be 

( ) ( )
( ) ,

2
exp| 2

1

1

2
3

2
12

1
2

32
3







−

Γ
∑= ∑ =

−=
i

n

in
i

n
i ttT

n

n

θθθπ  

which is a pdf of the Gamma distribution with scale parameter 2
12

1
i

n
i t∑ =  and shape 

parameter 2
3n  . Using the squared error loss function, the Bayes estimator of  θ   is given 

by ).|(~ TE θθ =   Since T|θ   ~ Gamma ,, 22
3

2
1 





 ∑ = i

n

i
tn   then 

.3)|(~
2

1 i
n

i
t

nTE
∑ =

== θθ                                                (3.4) 

Remark 3.1:  
From equation (3.4), it is clear that the MLE and the Bayes estimator coincide. 

 
3.4 Uniformly minimum variance unbiased estimator 

Unbiased or asymptotically unbiased estimation plays an important role in point 
estimation theory. Unbiased estimators can be used as building blocks to construct better 
estimators.  Let nTT ,...,1  be an i.i.d from LBR distribution with an unknown  .0>θ  Then 

2
1 i

n
i TS ∑= =  is sufficient and complete for .θ  Note that 

( ) ( ) ( ),)( 22
1

2
1 i

iid

i
n

ii
n

i
TEnTETESE === ∑∑ ==

 
and 

( ) .32

θ
=TE  

So, 
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( ) .3)( 2

θ
nTEnSE i ==  
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23
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Therefore, 
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23
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23
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is a function of the complete and sufficient statistic S  that is unbiased for .θ  Thus, we 
have 

.23ˆ
2

1 i
n
i

UMVUE T
n

∑
−

=
=

θ  

 
Remark 3.2.  

The MME is not a function of minimal sufficient statistic ∑=
=

n

i iTS
1

2 , and thus, 

under the squared error loss function, it is dominated by )|(*
1 SE θδ =  (the Rao-

Blackwell theorem). Using the Basu theorem, it can be concluded that the random 

variables 
2

/TS  and S are independent, and therefore, Sc /**
1 =δ  for some real constant

*c .  It makes sense to restrict to estimators of the form .0,/ >= cSccδ  Using the fact 

stated in Interpretation 2.2, it follows that ( ) ( )1,2/3~2/ nGammaSθ  distribution, and 
therefore, the bias and mean squared error of  cδ  are given, respectively, by: 

( ) ,1
23

, θδθ 





 −

−
=

n
cb c

 
and 

( ) ( ) ( )( )[ ]
( )( ) .

4323
4323432,

22

−−
−−+−−

=
nn

nncncm c
θδθ                        (3.5) 

From (3.5), it is clear that the choice 430 −== ncc (with corresponding estimator  
Snc /43

0
−=δ ) is the best choice under the squared error loss function. 

 
 

4. SOME APPLICATIONS 
 

4.1 Numerical example 
In this subsection, 1000 different samples are simulated from the LBR with different 

sizes. We studied the behavior of the estimates of the parameterθ . Table 1 shows the 
moment estimates while Table 2 shows the maximum likelihood estimates of LBR 
distribution. 
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Table 1: Moments estimate of parameter θ. 
 Θ n Estimate Bias MSE  
 

0.5 

20 0.513379 0.0133788 0.000179171  
 50 0.508656 0.0086560 0.000075002  
 70 0.503849 0.0038492 0.000014831  
 150 0.502320 0.0023204 0.000005389  
 

1 

20 1.02676 0.0267576 0.000716686  
 50 1.017310 0.0173121 0.000300008  
 70 1.007700 0.0076985 0.000059326  
 150 1.004640 0.0046409 0.000021560  
 

1.5 

20 1.537400 0.0373956 0.001399830  
 50 1.522760 0.0227579 0.000518442  
 70 1.507090 0.0070875 0.000050283  
 150 1.502390 0.0023905 0.000005720  
 

2 

20 2.048520 0.0485156 0.002356120  
 50 2.027020 0.0270195 0.000730784  
 70 2.007850 0.0078457 0.000061617  
 150 2.001240 0.0012369 0.000001531  

 
 

Table 2: Maximum Likelihood estimate of parameter θ. 
 θ n Estimate Bias MSE  

 

0.5 

20 0.51650 0.0165077   0.00027278  
 50 0.50967 0.0096723 0.00009365  
 70 0.50525 0.0052497 0.00002759  
 150 0.50270 0.0027021 0.00000731  
 

1 

20 1.03302 0.0330153  0.0010911  
 50 1.01934 0.0193447  0.00037459  
 70 1.01050  0.0104994  0.00011035  
 150 1.00540 0.0054042  0.00002923  
 

1.5 

20 1.54433 0.044328  0.00196694  
 50 1.52157 0.0215688  0.00046568  
 70 1.50469 0.0046936  0.00002205  
 150 1.49568 -0.0043217   0.00001869  
 

2 

20 2.05647 0.0564663  0.00319163  
 50 2.01934  0.0193413  0.000374461  
 70 2.00057 0.0005669  0.00000032  
 150 1.98663 -0.0133735  0.00017903  
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According to Table 1, the mean square error and the bias of the moment estimate of the 
parameter θ  decrease when the sample size ( n ) increases. 
The asymptotic unbiasedness and consistency of the parameter are clearly shown in Table 
2. Comparing Table 1 with Table 2 shows that moment estimation provides much better 
results than the maximum likelihood estimation in terms of mean square error and bias. 
 
4.2 Real data sets 

In this subsection, we provide one data set analysis to see how the new model works 
in practice. The data set obtained from www.isixigma.com represents the cycle time of a 
process. 

Data set 
 

 10  13  13 14  14  15  15  16  17  
 17 17 17 18  18  18  19  21 21  
 21 22  22  23  24 25  25  26 26  
 27  27  27  28 28 30  34  35 35  
 38 42  42 53       

 
Some properties of the data set are computed in Table 3. 

 
Table 3: Properties of the data set. 

 E(T) Var(T)  γ1 γ2  
 23.8537 84.028 1.06327 1.01897  

    
Table 3 shows that the distribution of the data set is positive skewed right and leptokurtic. 
The parameter of the sample is estimated numerically. We used Eqs. (3.2) and (3.3) to 
obtain the MME and the MLE. The results are given in Table 4.  
 

Table 4: The MM and MLE estimate for the data set.  
 Distribution MM MLE  
 RD 0.00276064  0.00307231   
 LBR 0.00447538  0.00460847   

 
We want to test whether this data fits the RD or the LBR. 
We use the Kolmogorov-Smirnov (K-S) distance between the empirical distribution 
function, the fitted distribution function, and the chi-squared goodness of fit test to 
determine the appropriateness of the model. The MLE estimate, log-likelihood value, and 
K-S are presented in Table 5.  
 

Table 5: The parameter, log-likelihood, and K-S of the data set. 
 Distribution Parameter Log-

likelihood K-S  

 RD 0.00307231 -150.875 0.204258  
 LBR 0.00460847 -146.973 0.121086  
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By comparing the K-S distance of two distributions for the data set, the K-S of the LBR is 
smaller than the K-S of the RD. Thus, the data fits the LBR better than the RD. We also 
present the observed frequencies and the expected frequencies based on the fitted models 
in Tables 6 and 7. For the RD and the LBR, the chi-square value is equal to 7.815. 
 

Table 6: Observed frequencies and expected frequencies for the RD. 
 Intervals Observed (Oi)  Expected frequencies (Ei)  
 0 - 14 5 10.6594  
 14 - 22 16 10.8472  
 22 - 31 13 10.1251  
 31 - ∞ 7 9.36825  

 
Table 7: Observed frequencies and expected frequencies for the LBR. 

 Intervals Observed (Oi)  Expected frequencies (Ei)  
 0 - 14.5 5  7.84046   
 14.5 - 20.5  11 9.14804   
 20.5 - 25.5  10  7.93372   
 25.5 - 31.5   8 7.63621  
 31.5 - ∞ 7  8.44157   

 
Now, from Tables 6 and 7, the statistics are 8674840.6 and 2056456.2 , respectively. In 
comparing the statistics, 2

0χ  of the LBR is smaller than 2
0χ  of the RD. Therefore, LBR 

distribution fits better than the RD. 
 
 

5. CONCLUSION 
 

The proposed length-biased Rayleigh distribution has several desirable properties and 
nice physical interpretations. This model is useful and practical in areas such as physics, 
reliability, and life testing. The model has a unimodal pdf and an eventually increasing 
hazard rate function. Such characteristics are useful for modeling continuous data from 
life testing experiments. Real data sets are analyzed, and the proposed distribution can 
provide a better fit than other well-known distributions. Studying length-biased versions 
of other distributions such as Lomax distribution, log normal, and inverse Gaussian, 
among others, would be interesting.  
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