• Title/Summary/Keyword: Barrier film

Search Result 656, Processing Time 0.023 seconds

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

The characterization of a barrier against Cu diffusion by C-V measurement (C-V 측정에 의한 Cu 확산방지막 특성 평가)

  • 이승윤;라사균;이원준;김동원;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • The properties of TiN as a barrier against Cu diffusion ere studied by sheet resistance measurement, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and capacitance-voltage(C-V) measurement. The sensitivities of the various methods were compared. Specimens with Cu/TiN/Ti/SiO2/Si structure were prepared by various deposition techniques and annealed at various temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ in 10%H2/90%Ar ambient for hours. As the effectiveness of the barrier property of TiN against Cu diffusion was vanished, the irregular-shaped sports were observed and outdiffused Si were detected on the surface of the Cu thin film. The C-V characteristics of the MOS capacitors varied drastically with annealing temperatures. In C-V measurement, the inversion capacitance decreased at annealing temperature range from $500^{\circ}C$ to $700^{\circ}C$ and increased remarkably at $800^{\circ}C$. These variations may be due to the Cu diffusion through TiN into $SiO_2$ and Si.

  • PDF

Preparation and Characterization of High Density Polyethylene (HDPE)/Exfoliated Graphite (EFG) Nanocomposite Films (High Density Polyethylene (HDPE) / Exfoliated Graphite (EFG) 나노복합필름 제조와 특성에 관한 연구)

  • Kwon, Hyok;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Exfoliated graphite (EFG) with high aspect ratio was incorporated with high density polyethylene (HDPE) for use as high barrier packaging material such as water-sensitivity electric product and pharmaceutical packaging. Also HDPE/EFG nanocomposite films were prepared by adding the compatibilizer for effective dispersion and compatibility. Their chemical properties, crystal structure properties, thermal properties and water barrier properties of as-prepared HDPE/EFG nanocomposite films were investigated as a function of EFG contents. It showed that there is a weak interfacial interaction between HDPE and EFG, however, the water vapor permeations were decreased from 127 to 78 (70 ${\mu}m{\cdot}g/m^2$, $day{\cdot}atm$) by addition of EFG. Especially, the physical properties of HDPE/EFG nanocomposite films were effectively increased up to 0.5 wt%, however, there were no significant improvement of properties in nanocomposite films at the additional EFG loading. To maximize their performance of the nanocomposite films, further research is required to enhance the dispersion of EFG and compatibility of EFG in HDPE matrix.

  • PDF

The Effect of Post-deposition Annealing on the Properties of Ni/AlN/4H-SiC Structures (Ni/AlN/4H-SiC 구조로 제작된 소자의 후열처리 효과)

  • Min, Seong-Ji;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.604-609
    • /
    • 2020
  • We investigated the influence of rapid thermal annealing on aluminum nitride (AlN) thin film Schottky barrier diodes (SBDs) manufactured structures deposited on a 4H-silicon carbide (SiC) wafer using radio frequency sputtering. The Ni/AlN/4H-SiC devices annealed at 400℃ exhibited Schottky barrier diode (SBDs) properties with an on/off current ratio that was approximately 10 times higher than that of the as-deposited device structures and the devices annealed at 600℃ as measured at room temperature. Auger electron spectroscopy (AES) measurements revealed that atomic oxygen concentrations in the annealed AlN devices at 400℃, is ascribed to the improvement in on/off ratio and the reduction of on-resistance. Additionally, we investigated the electrical characteristics of the AlN/SiC SBD structures depending on the frequency variation of sound waves.

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Electrical Characteristics of Magnetic Tunnel Junctions with Different Cu-Phthalocyanine Barrier Thicknesses (Cu-Phthalocyanine 유기장벽 두께에 따른 스핀소자의 전기적 특성 변화 양상)

  • Bae, Yu-Jeong;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.162-166
    • /
    • 2012
  • V-I characteristics of Fe(100)/MgO(100)/Cu-phthalocyanine (CuPc)/Co hybrid magnetic tunnel junctions were investigated at different temperatures. Fe(100) and Co ferromagnetic layers were separated by an organic-inorganic hybrid barrier consisting of different thickness of CuPc thin film grown on a 2 nm thick epitaxial MgO(100) layer. As the CuPc thickness increases from 0 to 10 nm, a bistable switching behavior due to strong charging effects was observed, while a very large magenetoresistance was shown at 77 K for the junctions without the CuPc barrier. This switching behavior decreases with the increase in temperature, and finally disappears beyond 240 K. In this work, high-potential future applications of the MgO(100)/CuPc bilayer were discussed for hybrid spintronic devices as well as polymer random access memories (PoRAMs).

Characteristics and Thermal Stabilities of W-B-C-N Diffusion Barrier by Using the Incorporation of Boron Impurities (Boron 불순물에 의한 W-B-C-N 확산방지막의 특성 및 열적 안정성 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.32-35
    • /
    • 2008
  • Thermally stable diffusion barrier of tungsten carbon nitride(W-C-N) and of tungsten boron carbon nitride(W-B-C-N) thin films have studied to investigate the impurity behaviors of boron and nitrogen. In this paper we newly deposited tungsten boron carbon nitride(W-B-C-N) thin film for various $W_2B$ target power on silicon substrate. The impurities of the 100nm-thick W-C-N and W-B-C-N thin films provide stuffing effect for preventing the inter-diffusion between W-C-N or W-B-C-N thin films and silicon during the high temperature($700^{\circ}C{\sim}1000^{\circ}C$) annealing process.

Wax Barrier Effect on Migration Behaviors of Antiozonants in NR Vulcanizates (천연고무 가류물에서 왁스막이 오존노화방지제의 이동에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • Waxes compounded into rubber migrate to the surface and form a protection film on the rubber surface. In general, antiozonants were used with wax to protect ozonation of rubber. Influence of wax barrier formed on the surface of a rubber vulcanizate on migration of antiozonants was studied using natural rubber (NR) vulcanizates containing various type waxes. IPPD (N-isopropyl-N'-phenyl-p-phenylenediamine), HPPD (N-l,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), SBPPD (N,N'-di(sec-butyl)-p-phenylenediamine), and DMPPD (N,N'-di(1,4-dimethylpentyl)-p-phenylenediamine) were employed as antiozonants. Migration experiments were performed at constant temperatures of 60 and $80^{\circ}C$ for 10, 20, 30 days using a convection oven. The migration rates of the antiozonants in the vulcanizate without wax are faster than those in the vulcanizates containing waxes. The antiozonants migrate slower in the vulcanizate containing wax with a high molecular weight distribution than in the vulcanizate with a low one. The migration rates of DMPPD and SBPPD are faster than those of HPPD and IPPD.

  • PDF

Effect of the Surface Roughness of Electrode on the Charge Injection at the Pentacene/Electrode Interface (전극 표면의 거칠기가 펜터신/전극 경계면의 전류-전압 특성에 주는 영향)

  • Kim, Woo-Young;Jeon, D.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.93-99
    • /
    • 2011
  • We investigated how the surface roughness of electrode affects the charge injection at the pentacene/Au interface. After depositing Au film on the Si substrate by sputtering, we annealed the sample to control the Au surface roughness. Pentacene and Au top electrode were subsequently deposited to complete the sample. The nucleation density of pentacene was slightly higher on the rougher Au electrode, but surface morphologies of thick pentacene films were similar on both the as-prepared and the roughened Au electrodes. The current-voltage curves obtained from the Au/pentacene/Au structure measured as a function of temperature indicated that the interface barrier was higher for the rougher Au bottom-electrode. We propose that the higher barrier was caused by the lower work function of rougher electrode surface and the higher trap density at the interface.

ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices (유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조)

  • Hyeun Woo Kim;Hyeong Jun Lee;Seungmi Jang;Hyeongjun Yun;Dokyun Lee;Yongmin Lee;Sangyeon Park;Jihoon Jung;Seokjun Lim;Jeong Hyun Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF