DOI QR코드

DOI QR Code

The Effect of Post-deposition Annealing on the Properties of Ni/AlN/4H-SiC Structures

Ni/AlN/4H-SiC 구조로 제작된 소자의 후열처리 효과

  • Min, Seong-Ji (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Dept. of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2020.06.07
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

We investigated the influence of rapid thermal annealing on aluminum nitride (AlN) thin film Schottky barrier diodes (SBDs) manufactured structures deposited on a 4H-silicon carbide (SiC) wafer using radio frequency sputtering. The Ni/AlN/4H-SiC devices annealed at 400℃ exhibited Schottky barrier diode (SBDs) properties with an on/off current ratio that was approximately 10 times higher than that of the as-deposited device structures and the devices annealed at 600℃ as measured at room temperature. Auger electron spectroscopy (AES) measurements revealed that atomic oxygen concentrations in the annealed AlN devices at 400℃, is ascribed to the improvement in on/off ratio and the reduction of on-resistance. Additionally, we investigated the electrical characteristics of the AlN/SiC SBD structures depending on the frequency variation of sound waves.

본 연구에서는 RF 스퍼터를 이용하여 SiC 기판위에 AlN막을 증착하고 급속 열처리 (RTA) 공정의 온도에 따른 AlN/4H-SiC 구조의 전기적, 재료적 특성에 대한 영향을 분석하였다. 400도에서 RTA 공정을 진행한 Ni/AlN/4H-SiC SBD 소자의 온/오프 비율은 RTA 공정 전 그리고 600도에서 RTA 공정을 한 소자에 비해 약 10배정도 높은 값을 가졌다. 또한 오제이 전자현미경을 통한 원자성분 분석을 통해 증착한 AlN 층내의 존재하는 산소의 양이 후열 처리 조건에 따라 변화함을 확인하였고 소자의 온/오프 비율 그리고 온-저항 등 소자의 성능에 영향을 주는 것을 분석하였다. 추가적으로, 제작한 소자의 노출된 음향 주파수에 따른 전기적 특성변화를 분석하였다.

Keywords

References

  1. F. Jiang, C. Zheng, W. Changda, Fang. Li, P. Wenqing, D. Yong, J. Dai, "The growth and properties of ZnO film on Si (111) substrate with an AlN buffer by AP-MOCVD," J. Lumin., vol.123, pp.905-907, 2007. DOI: 10.1016/j.jlumin.2006.01.322
  2. C. M. Lin, Y. Y. Chen, V. V. Felmetsger, W. C. Lien, T. Riekkinen, D. G. Senesky, A. P. Pisano, "Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures," J. Micromechanics Microengineering, vol.23, pp.25019, 2013. DOI: 10.1088/0960-1317/23/2/025019
  3. Y. Wang, X. Tao, R. Tao, J. Zhou, Q. Zhang, D. Chen, H. Jin, S. Dong, J. Xie, Y. Q. Fu, "Acoustofluidics along inclined surfaces based on AlN/Si Rayleigh surface acoustic waves," Sensors and Actuators A: Physical, vol.306, pp.111967, 2020. DOI: 10.1016/j.sna.2020.111967
  4. E. Ledesma et al., "AlN Piezoelectric Micromachined Ultrasonic Transducer Array Monolithically Fabricated on Top of Pre-Processed CMOS Substrates," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, pp.655-658, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808706
  5. L. Vergara, M. Clement, E. Iborra, A. Sanz-Hervas, J. Garcia Lopez, Y. Morilla, J. Sangrador, M. A. Respaldiza, "Influence of oxygen and argon on the crystal quality and piezoelectric response of AlN sputtered thin films," Diam. Relat. Mater, vol.13, pp.839-842, 2004. DOI: 10.1016/j.diamond.2003.10.063
  6. J. H. Edgar, Z. Gu, L. Gu, D. J. Smith, "Interface properties of an AIN/(AIN) x(SiC) 1-x/4H-SiC heterostructure," Phys. Status Solid Appl. Mater. Sci, vol.203, pp.3720-3725, 2006. DOI: 10.1002/pssa.200622279
  7. X. H. Xu, H. S. Wu, C. J. Zhang, Z. H. Jin, "Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin Solid Films, vol. 388, pp.62-67, 2001. DOI: 10.1016/S0040-6090(00)01914-3
  8. T. Ghz, W. Xing, Z. Liu, H. Qiu, K. Ranjan, Y. Gao, "InAlN/GaN HEMTs on Si With High fT of 250 GHz," IEEE Electron Device Lett., vol.39, pp.75-78, 2018. DOI: 10.1109/LED.2017.2773054
  9. T. Mattila, R. Nieminen, "Ab initio study of oxygen point defects in GaAs, GaN, and AlN," Phys. Rev. B - Condens. Matter Mater. Phys., vol.54, pp.16676-16682, 1996. DOI: 10.1103/PhysRevB.54.16676
  10. R. Singh, S. H. Christiansen, O. Moutanabbir, U. Gosele, "The phenomenology of ion implantation-induced blistering and thin-layer splitting in compound semiconductors," J. Electron. Mater., vol.39, pp.2177-2189, 2010. DOI: 10.1007/s11664-010-1334-x
  11. Y. J. Lv, X. B. Song, Y. G. Wang, Y. L. Fang, Z. H. Feng, "Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors," Nanoscale Res. Lett., vol.11, no.373, 2016. DOI: 10.1186/s11671-016-1591-6
  12. S. Swaminathan, B. Srinivasa Rao, V. Jayaram, "The influence of oxygen impurities on the formation of AlN-Al composites by infiltration of molten Al-Mg," Mater. Sci. Eng. A, vol.337, pp.134-139, 2002. DOI: 10.1016/S0921-5093(02)00002-3
  13. J. Jarrige, J. P. Lecompte, J. Mullot, G. Muller, "Effect of oxygen on the thermal conductivity of aluminium nitride ceramics," J. Eur. Ceram. Soc., vol.17, pp.1891-1895, 1997. DOI: 10.1016/S0955-2219(97)00078-2