• 제목/요약/키워드: Bar structure

Search Result 781, Processing Time 0.026 seconds

A Development of Small-diameter Composite Helical Spring Structure for Reinforcement of Fiber Splice (광섬유 융착 부위 중접용 미소 직경 복합재료 스프링 구조물 개발)

  • 윤영기;정승환;이우일;이병호;윤희석
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2003
  • Optical fibers, for splice, are stripped of their plastic coatings with a plastic stripper and cut off at the end. Therefore, stripped fibers often receive accidental damages and sustain small flaws or cracks. As a result, the breaking strength of a fiber splice made under normal conditions is reduced to about 0.4∼1 ㎏ on the average, nearly one-tenth of the fiber's strength. This makes it necessary to reinforce the splice. One of the most practical and reliable methods for optical fiber splicing is fusion splicing, comprising the steps of tripping the plastic coatings from the two fiber ends to be splice, placing the two bare fiber ends in an end-to-end position, and of fusion splicing, such as are fusion. Generally, steel bar (SB) sleeve is used to reinforce this fusion-splicing region. However, this type of sleeve has a critical defect to keep optical lose after bent by a sudden load. New type of composite spring (CS) sleeve is developed to make up for the weak points in the SB sleeve. This sleeve has an effect on restoration to the original state after eliminating the bending load. The optical spectrum analyzes results show the availability of reinforcement for the fusion splicing optical fiber using small diameter composite springs under the various loading conditions.

A Study on the Restoration of Shinan Shipwreck (신안해저 인양 침몰선의 복원 연구)

  • Kim, Yong Han
    • Journal of Conservation Science
    • /
    • v.4 no.1 s.4
    • /
    • pp.3-10
    • /
    • 1995
  • This study focused on the reconstructional point of Shinan ship-wreck that was excavated between $1976\~1984$. The wreck, which might be sunk in the beginning of the 14th century, is regarded as a vessel of Yuan dynasty, China. This paper tried to find out some structural characteristics and principal dimensions for restoration. The Shinan shipwreck's structural characteristics are summarized as follow, 1) The Shinan shipwreck is formed V-shaped cross section with bar keel, 2) The vessel is divided 8 holds by 7 bulkheads. 3) The ship has flat type stem and transome stern. 4) A rabbeted clinker -built is basically adopted on planking joint. 5) A wooden sheathing, which means a sort of protecting board against marine insects, is covered outside of the main hull, 6) For making an watertight structure, oakum and lime mixtured t'ung-oil are used along the seam of planking and bulkhead. 7) A V-shaped deep water-way exists at both deck side. 8) The shipwreck is believed to have 2 masts at least. 9) The shiptimbers are classified as Chinese Red Pine(Pinus Massonina) which is mainly grown in the southern part of China. Considering as mentioned above the structural characteristics, Shinan ship-wreck could be classified as Chinese Fu-chuan type(복선형) of sea-going ship. The Shinan ship's principal dimensions which are calculated on the basis of Chinese traditional shipbuilding custom, are as follow, Length overall(L.O.A). : 34.80m Length water line(L.W.L) : 24.90m Breadth(B.max.) : 11m Breadth(B) : 10m Depth at keel line(H) : 3.75m Draft(D). : 3.15m Freeboard(F) : 0.65m Ratio, length/breadth(L/B). : 2.26 Ration, breadth/depth(B/D) : 3.5 Height of stem : 7m Height of stern : 10m Displacement : ab.340ton.

  • PDF

Analysis of Correlativity with the Number of Blasting Holes Due to Exposed Length of Steel Bars and Vertical Load on Scaled Reinforced Concrete Columns (축소모형 철근콘크리트 기둥에서 철근의 노출길이와 수직하중에 따른 발파공수와의 상관성 분석)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, the 1/5 scale models of the reinforced concrete colunms were designed and fabricated. The influence of the number of blasting holes on the exposed length of steel bars and vertical load was investigated. The relation between the length of steel bar and the number of blasting holes was examined by performing the blast tests considering the vertical load on the scaled reinforced concrete columns. Weight of scaled column models by blasting and that of exposed was compared with the number of blasting holes. Finally, based on the exposed length of steel bars and vertical load, the number of blasting holes were calculated. Results shows that the number of blasting holes calculated in this study are suitable for scaled structure models test by blasting demolition.

Study on the Performance of Laser Welded Joint of Aluminum Alloys for Car Body

  • Kutsuna, M.;Kitamura, S.;Shibata, K.;Sakamoto, H.;Tsushima, K.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired fer car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. In the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6NO 1 alloy welds. Aluminum alloy plate of 2.Omm in thickness with filler metal bar was welded by twin beam Nd: YAG laser facility (total power: 5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 1/min was used. The defocusing distance is kept at 0 mm. At travel speeds off 3 to 9 and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars (SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성)

  • Kong, Yu Sik;Park, Young Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

A Study on Fire-proof Characteristics of Ultra High Strength Concrete Using Polyamide Fiber (폴리아미드섬유를 사용한 초고강도 콘크리트의 내화성능에 관한 연구)

  • Lee, Soo-Choul;Jeon, Joong-Kyu;Jeon, Chan-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2011
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increased. High performance concrete has cons of explosion in a fire. This explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using polypropylene-fiber and steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide fiber, proper fiber mixing volume by compressive strength areas of concrete more than 2.5kg in 160MPa. These amount of a compound can control the explosion.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

The Pressure Effects on the Micellization of Dodecylpyridinium Bromide in Urea Aqueous Solutions (요소-수용액에서 Dodecylpyridinium Bromide의 미셀화에 미치는 압력효과)

  • Chung Jong-Jae;Lee Sang-Wook;Roh Byung-Gil;Choi Joon-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.28-32
    • /
    • 1992
  • The critical micelle concentration(CMC) values of Dodecylpyridinium bromide(DoPB) were determined by an electric conductivity method at 1${\sim}$2000 bars and $25^{\circ}C$. The CMC of DoPB increases with the addition of urea in the whole pressure region studied, and the CMC increases with an increase of the pressure in the low-pressure region, while in the high-pressure region the CMC decreases. The partial molar volume change $({\Delta}V^m_o)$ on micellization was also investigated in some urea aqueous solutions. The change $({\Delta}V^m_o)$ was reduced by the addition of urea. The results suggest that the "iceberg" structure of water around the hydrocarbon chain of the monomeric surfactant is effectively broken down by urea.

  • PDF

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis (푸리에 변환을 이용한 3층 구조 박막의 두께 측정)

  • Cho, Hyun-Ju;Won, Jun-Yeon;Jeong, Young-Gyu;Woo, Bong-Ju;Yoon, Jun-Ho;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.143-150
    • /
    • 2016
  • The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

Tip Deflection Analysis of Mobile Habor Crane Supported by Cable and Elastic Bar (케이블과 탄성보로 지지되는 모바일 하버 크레인의 끝단 처짐량 분석)

  • Hwang, Soon-Wook;Han, Ki-Chul;Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • Mobile harbor is characterized by the lightweight compact structure when compared to the conventional above-ground port container crane. A new concept RORI crane system, which was devised for mobile harbor to satisfy the compactness and light weightness, not only can load/unload containers with high speed on sea but can be completely folded at maneuvering mode. This study is concerned with the tip deflection of the horizontal boom of mobile harbor at container loading operation. Both the theoretical method utilizing the Castigliano's theorem and the numerical approach by finite element method are employed, and the reliability of the latter approach is verified through the comparison with the theoretical results. And then, the effect of the initial cable tension on the tip deflection is parametrically examined by the finite element analysis.