• Title/Summary/Keyword: Bank Performance

Search Result 556, Processing Time 0.027 seconds

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Al-Marghilani, Abdulsamad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.319-328
    • /
    • 2021
  • Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

Designing a low-power L1 cache system using aggressive data of frequent reference patterns

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.9-16
    • /
    • 2022
  • Today, with the advent of the 4th industrial revolution, IoT (Internet of Things) systems are advancing rapidly. For this reason, a various application with high-performance and large-capacity are emerging. Therefore, there is a need for low-power and high-performance memory for computing systems with these applications. In this paper, we propose an effective structure for the L1 cache memory, which consumes the most energy in the computing system. The proposed cache system is largely composed of two parts, the L1 main cache and the buffer cache. The main cache is 2 banks, and each bank consists of a 2-way set association. When the L1 cache hits, the data is copied into buffer cache according to the proposed algorithm. According to simulation, the proposed L1 cache system improved the performance of energy delay products by about 65% compared to the existing 4-way set associative cache memory.

Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine (자동 분할과 ELM을 이용한 심장질환 분류 성능 개선)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.32-43
    • /
    • 2009
  • In this paper, we improve the performance of cardiac disorder classification by continuous heart sound signals using automatic segmentation and extreme learning machine (ELM). The accuracy of the conventional cardiac disorder classification systems degrades because murmurs and click sounds contained in the abnormal heart sound signals cause incorrect or missing starting points of the first (S1) and the second heart pulses (S2) in the automatic segmentation stage, In order to reduce the performance degradation due to segmentation errors, we find the positions of the S1 and S2 pulses, modify them using the time difference of S1 or S2, and extract a single period of heart sound signals. We then obtain a feature vector consisting of the mel-scaled filter bank energy coefficients and the envelope of uniform-sized sub-segments from the single-period heart sound signals. To classify the heart disorders, we use ELM with a single hidden layer. In cardiac disorder classification experiments with 9 cardiac disorder categories, the proposed method shows the classification accuracy of 81.6% and achieves the highest classification accuracy among ELM, multi-layer perceptron (MLP), support vector machine (SVM), and hidden Markov model (HMM).

Improvement Plans of the Entrepreneurial Ecosystem Using Importance-Performance Analysis (IPA 분석을 통한 창업생태계 개선방안 도출)

  • Kim, Su-Jin;Seo, Kyongran;Nam, Jung-Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.4
    • /
    • pp.101-114
    • /
    • 2022
  • Recently, various studies on the entrepreneurial ecosystem have been conducted. The entrepreneurial ecosystem is composed of various elements such as entrepreneurs, governments, and infrastructure, and these factors interact to contribute to economic development. The purpose of this study was to analyze differences in importance and performance of the entrepreneurial ecosystem for startups using the importance-performance analysis (IPA) method. Based on this, the importance and current level of the components of the entrepreneurial ecosystem were identified and policy implications were presented. The results of the study are as follows. The importance ranking was in the order of startup support program(4.43), startup funding (4.39), market accessibility(4.30). The ranking of performance was startup support program(3.81), ease of starting a business(3.76), support for startup support institutions(3.66), and startup funding(3.66). All elements of the entrepreneurial ecosystem showed higher importance than performance. This means that the components of the entrepreneurial ecosystem in Korea are recognized as important, but do not play a significant role in terms of performance for startups. In addition, the factors with the highest improvement in the importance-performance matrix were 「safety nets for startup failure」, 「culture of acceptance of failure」, 「ease of market entry」, 「ease of startup survival」, and 「ease of exit」. This study suggested improvement measures such as establishing a social safety net, improving awareness of startup failure culture, matching successful startups, strengthening scale-up support by growth stage, easing regulations in new business fields, and diversifying investment recovery strategies.

Estimation of the Korean Yield Curve via Bayesian Variable Selection (베이지안 변수선택을 이용한 한국 수익률곡선 추정)

  • Koo, Byungsoo
    • Economic Analysis
    • /
    • v.26 no.1
    • /
    • pp.84-132
    • /
    • 2020
  • A central bank infers market expectations of future yields based on yield curves. The central bank needs to precisely understand the changes in market expectations of future yields in order to have a more effective monetary policy. This need explains why a range of models have attempted to produce yield curves and market expectations that are as accurate as possible. Alongside the development of bond markets, the interconnectedness between them and macroeconomic factors has deepened, and this has rendered understanding of what macroeconomic variables affect yield curves even more important. However, the existence of various theories about determinants of yields inevitably means that previous studies have applied different macroeconomics variables when estimating yield curves. This indicates model uncertainties and naturally poses a question: Which model better estimates yield curves? Put differently, which variables should be applied to better estimate yield curves? This study employs the Dynamic Nelson-Siegel Model and takes the Bayesian approach to variable selection in order to ensure precision in estimating yield curves and market expectations of future yields. Bayesian variable selection may be an effective estimation method because it is expected to alleviate problems arising from a priori selection of the key variables comprising a model, and because it is a comprehensive approach that efficiently reflects model uncertainties in estimations. A comparison of Bayesian variable selection with the models of previous studies finds that the question of which macroeconomic variables are applied to a model has considerable impact on market expectations of future yields. This shows that model uncertainties exert great influence on the resultant estimates, and that it is reasonable to reflect model uncertainties in the estimation. Those implications are underscored by the superior forecasting performance of Bayesian variable selection models over those models used in previous studies. Therefore, the use of a Bayesian variable selection model is advisable in estimating yield curves and market expectations of yield curves with greater exactitude in consideration of the impact of model uncertainties on the estimation.

Asymptotic Performance of ML Sequence Estimator Using an Array of Antennas for Coded Synchronous Multiuser DS-CDMA Systems

  • Kim, Sang G.;Byung K. Yi;Raymond Pickholtz
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.182-188
    • /
    • 1999
  • The optimal joint maximum-likelihood sequence estima-for using an array of antennas is derived for synchronous direct sequence-code division multiple access (DS-CDMA) system. Each user employs a rate 1/n convolutional code for channel coding for the additive white Gaussian noise (AWGN) channel. The array re-ceiver structure is composed of beamformers in the users' direc-tions followed by a bank of matched filters. The decoder is imple-mented using a Viterbi algorithm whose states depend on the num-ber of users and the constraint length of the convolutional code. The asymptotic array multiuser coding gain(AAMCG)is defined to encompass the asymptotic multiuser coding gain and the spatial information on users' locations in the system. We derive the upper and lower bounds of the AAMCG. As an example, the upper and lower bounds of AAMCG are obtained for the two user case where each user employes the maximum free distance convolutional code with rate 1/2. The enar-far resistance property is also investigated considering the number of antenna elements and user separations in the space.

  • PDF

Identification and Characterization of Hydrogen Peroxide-generating Lactobacillus fermentum CS12-1

  • Kang, Dae-Kyung;Oh, H.K.;Ham, J.-S.;Kim, J.G.;Yoon, C.H.;Ahn, Y.T.;Kim, H.U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.90-95
    • /
    • 2005
  • Lactic acid bacteria were isolated from silage, which produce high level of hydrogen peroxide in cell culture supernatant. The 16S rDNA sequences of the isolate matched perfectly with that of Lactobacillus fermentum (99.9%), examined by a 16S rDNA gene sequence analysis and similarity search using the GenBank database, thus named L. fermentum CS12-1. L. fermentum CS12-1 showed resistance to low pH and bile acid. The production of hydrogen peroxide by L. fermentum CS12-1 was confirmed by catalase treatment and high-performance liquid chromatography. L. fermentum CS12-1 accumulated hydrogen peroxide in culture broth as cells grew, and the highest concentration of hydrogen peroxide reached 3.5 mM at the late stationary growth phase. The cell-free supernatant of L. fermentum CS12-1 both before and after neutralization inhibited the growth of enterotoxigenic Escherichia coli K88 that causes diarrhea in piglets.

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

A Case Study of Implementing K-IFRS : Lessons and Implications from the A Bank (K-IFRS 도입사례 연구 : A은행의 회계정책 및 대손충당금 설정시스템을 중심으로)

  • Kim, Ki-Beom;Jung, Suk-Yong;Hwang, Kyu-Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.159-165
    • /
    • 2013
  • This kind of case study suggests a way for future's accounting standards under the complicated situation of K-IFRS. A change of accounting standards causes a severely different performance between K-IFRS and K-GAAP. Further, the change affects the whole business of the financial companies. As the K-IFRS is not a rule based accounting standard but a principle based accounting standard, companies have to keep their internal system in detail. Likewise, companies can get their competitiveness in the field.

Analysis of CRLB Performances with CAF under Multiple Emitters (CAF 이용 다중 발기하에서의 CRLB 성능 분석)

  • Lee, Young-kyu;Yang, Sung-hoon;Lee, Chang-bok;Park, Young-Mi;Lee, Moon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In this paper, we described the Cramer-Rao Lower Bound (CLRB) performances of Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) methods when there are multiple emitters. The TDOA and FDOA values between two receivers can be simultaneously estimated by using the so-called Complex Ambiguity Function (CAF). In the case of multiple emitters, there exist Inter Symbol Interferences (ISIs) in the measurement data. Therefore, it is required to reduce the effect of ISI and provide a performance evaluation method of TDOA and FDOA estimations. In order to eliminate the ISIs, using of a filter bank before calculating CAF is proposed when the carrier frequencies of the emitters are different to one another. Angle of Arrival (AOA) or Received Signal Strength (RSS) methods before calculating CAF were proposed to reduce the ISIs when the carrier frequencies are the same. In order to evaluate the CRLB of TDOA and FDOA estimations, we employed the conditional probability distribution method and described the numerical comparison results.