• 제목/요약/키워드: Banach space operator

검색결과 146건 처리시간 0.026초

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

IMPROVED LOCAL CONVERGENCE ANALYSIS FOR A THREE POINT METHOD OF CONVERGENCE ORDER 1.839

  • Argyros, Ioannis K.;Cho, Yeol Je;George, Santhosh
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.621-629
    • /
    • 2019
  • In this paper, we present a local convergence analysis of a three point method with convergence order $1.839{\ldots}$ for approximating a locally unique solution of a nonlinear operator equation in setting of Banach spaces. Using weaker hypotheses than in earlier studies, we obtain: larger radius of convergence and more precise error estimates on the distances involved. Finally, numerical examples are used to show the advantages of the main results over earlier results.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.

SYSTEM OF GENERALIZED MULTI-VALUED RESOLVENT EQUATIONS: ALGORITHMIC AND ANALYTICAL APPROACH

  • Javad Balooee;Shih-sen Chang;Jinfang Tang
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.785-827
    • /
    • 2023
  • In this paper, under some new appropriate conditions imposed on the parameter and mappings involved in the resolvent operator associated with a P-accretive mapping, its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. This paper is also concerned with the construction of a new iterative algorithm using the resolvent operator technique and Nadler's technique for solving a new system of generalized multi-valued resolvent equations in a Banach space setting. The convergence analysis of the sequences generated by our proposed iterative algorithm under some appropriate conditions is studied. The final section deals with the investigation and analysis of the notion of H(·, ·)-co-accretive mapping which has been recently introduced and studied in the literature. We verify that under the conditions considered in the literature, every H(·, ·)-co-accretive mapping is actually P-accretive and is not a new one. In the meanwhile, some important comments on H(·, ·)-co-accretive mappings and the results related to them appeared in the literature are pointed out.

M-IDEALS AND PROPERTY SU

  • Cho, Chong-Man;Roh, Woo-Suk
    • 대한수학회보
    • /
    • 제38권4호
    • /
    • pp.663-668
    • /
    • 2001
  • X and Y are Banach spaces for which K(X, Y), the space of compact operators from X to Y, is an M-ideal in L(X, Y), the space of bounded linear operators form X to Y. If Z is a closed subspace of Y such that L(X, Z) has property SU in L(X, Y) and d(T, K(X, Z)) = d(T, K(X, Y)) for all $T \in L(X, Z)$, then K(X, Z) is an M-ideal in L(X, Z) if and only if it has property SU is L(X, Z).

  • PDF

POLYNOMIAL FACTORIZATION THROUGH Lγ(μ) SPACES

  • Cilia, Raffaella;Gutierrez, Joaquin M.
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1293-1307
    • /
    • 2009
  • We give conditions so that a polynomial be factorable through an $L_{\gamma}({\mu})$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1-factorable.

SOLUTIONS OF HIGHER ORDER INHOMOGENEOUS PERIODIC EVOLUTIONARY PROCESS

  • Kim, Dohan;Miyazaki, Rinko;Naito, Toshiki;Shin, Jong Son
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1853-1878
    • /
    • 2017
  • Let $\{U(t,s)\}_{t{\geq}s}$ be a periodic evolutionary process with period ${\tau}$ > 0 on a Banach space X. Also, let L be the generator of the evolution semigroup associated with $\{U(t,s)\}_{t{\geq}s}$ on the phase space $P_{\tau}(X)$ of all ${\tau}$-periodic continuous X-valued functions. Some kind of variation-of-constants formula for the solution u of the equation $({\alpha}I-L)^nu=f$ will be given together with the conditions on $f{\in}P_{\tau}(X)$ for the existence of coefficients in the formula involving the monodromy operator $U(0,-{\tau})$. Also, examples of ODEs and PDEs are presented as its application.