• Title/Summary/Keyword: Bacterial community structure

Search Result 202, Processing Time 0.034 seconds

Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor

  • Tian, Hailong;Yan, Yingchun;Chen, Yuewen;Wu, Xiaolei;Li, Baoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.373-384
    • /
    • 2016
  • The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes.

The Bacterial Communities Structure and Its Environmental Determinants in Lake Soyang (소양호 세균군집구조와 그 구조에 영향을 주는 환경요인)

  • 김동주;홍선희;최승익;안태석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.136-141
    • /
    • 2000
  • The temporal variation of bacterial community and environmental factors, affecting on bacterial community structure were estimated monthly kom April, 1998 to May, 1999. Bacterial community structures were determined by in situ hyblidization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and epifluorescence microscopy; and the statistical analysis was done by SPSS program. The oligonucleotide probes used in this study were EUB338, ALFlb, GAM42a, and CF. In surface water, $\alpha$-group was related to only DOC (-0.538, p<0.05) and Chlorophyll a concentration was related to y-group (-0.630, p$\beta$-group and Cytophaga-Flavobacterium group were related to water temperature as 0.665, and 0.685 @<0.05). Between pH and $\beta$-group, there was a positive relationship (0.541, p<0.05), and Cytophaga-Flavobactevizim group was represent to correlation (0.672, p

  • PDF

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment (남극 해양에서 생물막 생성 초기 단계의 세균 군집 구조 변화)

  • Lee, Yung Mi;Cho, Kyung Hee;Hwang, Kyuin;Kim, Eun Hye;Kim, Mincheol;Hong, Soon Gyu;Lee, Hong Kum
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.49-58
    • /
    • 2016
  • Compared to planktonic bacterial populations, biofilms have distinct bacterial community structures and play important ecological roles in various aquatic environments. Despite their ecological importance in nature, bacterial community structure and its succession during biofilm development in the Antarctic marine environment have not been elucidated. In this study, the succession of bacterial community, particularly during the early stage of biofilm development, in the Antarctic marine environment was investigated by pyrosequencing of the 16S rRNA gene. Overall bacterial distribution in biofilms differed considerably from surrounding seawater. Relative abundance of Gammaproteobacteria and Bacteroidetes which accounted for 78.9-88.3% of bacterial community changed drastically during biofilm succession. Gammaproteobacteria became more abundant with proceeding succession (75.7% on day 4) and decreased to 46.1% on day 7. The relative abundance of Bacteroidetes showed opposite trend to Gammaproteobacteria, decreasing from the early days to the intermediate days and becoming more abundant in the later days. There were striking differences in the composition of major OTUs (${\geq}1%$) among samples during the early stages of biofilm formation. Gammaproteobacterial species increased until day 4, while members of Bacteroidetes, the most dominant group on day 1, decreased until day 4 and then increased again. Interestingly, Pseudoalteromonas prydzensis was predominant, accounting for up to 67.4% of the biofilm bacterial community and indicating its important roles in the biofilm development.

Comparative Study of Rhizobacterial Community Structure of Plant Species in Oil-Contaminated Soil

  • Lee, Eun-Hee;Cho, Kyong-Suk;Kim, Jai-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1339-1347
    • /
    • 2010
  • In this study, the identity and distribution of plants and the structure of their associated rhizobacterial communities were examined in an oil-contaminated site. The number of plant species that formed a community or were scattered was 24. The species living in soil highly contaminated with total petroleum hydrocarbon (TPH) (9,000-4,5000 mg/g-soil) were Cynodon dactylon, Persicaria lapathifolia, and Calystegia soldanella (a halophytic species). Among the 24 plant species, the following have been known to be effective for oil removal: C. dactylon, Digitaria sanguinalis, and Cyperus orthostachyus. Denaturing gradient gel electrophoresis (DGGE) profile analysis showed that the following pairs of plant species had highly similar (above 70%) rhizobacterial community structures: Artemisia princeps and Hemistepta lyrata; C. dactylon and P. lapathifolia; Carex kobomugi and Cardamine flexuosa; and Equisetum arvense and D. sanguinalis. The major groups of rhizobacteria were Beta-proteobacteria, Gamma-proteobacteria, Chloroflexi, Actinobacteria, and unknown. Based on DGGE analysis, P. lapathifolia, found for the first time in this study growing in the presence of high TPH, may be a good species for phytoremediation of oil-contaminated soils and in particular, C. soldanella may be useful for soils with high TPH and salt concentrations. Overall, this study suggests that the plant roots, regardless of plant species, may have a similar influence on the bacterial community structure in oil-contaminated soil.

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan;Jia, Fengan;Lv, Rui;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Bacterial Community Shift during the Startup of a Full-Scale Oxidation Ditch Treating Sewage

  • Chen, Yajun;Ye, Lin;Zhao, Fuzheng;Xiao, Lin;Cheng, Shupei;Zhang, Xu-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2017
  • The oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized, and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%-48.4%) was the most dominant bacterial phylum in the OD system, but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with genus Flavobacterium exhibited remarkable decreasing trends, whereas bacterial species belonging to the OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen, and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of the bacterial community structure and microbial ecology during the startup of a full-scale wastewater treatment bioreactor.

The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI) (인공 수초재배섬에서 세균의 활성과 세균 군집 구조)

  • Jeon, Nam-Hui;Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

Microbial community structure analysis from Jeju marine sediment (제주도 인근 해양퇴적물 내의 미생물 군집 구조분석)

  • Koh, Hyeon Woo;Rani, Sundas;Hwang, Han-Bit;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.375-379
    • /
    • 2016
  • In this study, the structure and diversity of bacterial community were investigated in the surface and subsurface marine sediments using a NGS method (i.e. illumina sequencing technology). The bacterial community in the surface was distinct from that in the subsurface of marine sediment; with the exception of the phylum Proteobacteria, the relative abundance of Bacteroides phylum were higher in the surface than subsurface, whereas the sequences affiliated to the phyla Chloroflexi and Acidobacteria were relatively more copious in the subsurface than surface sediment. Moreover, interestingly, we observed that the phyla Nitrospinae and Nitrospirae contribute to nitrogen cycle in the marine sediment. This study may present the possibility for the presence of novel microorganisms as unexplored sources and provide basic information on the microbial community structure.