DOI QR코드

DOI QR Code

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan (College of Life Science, Shaanxi Normal University) ;
  • Jia, Fengan (Shaanxi Institute of Microbiology) ;
  • Lv, Rui (Shaanxi Institute of Microbiology) ;
  • Guan, Min (Shaanxi Agricultural Machinery Research Institute) ;
  • Jia, Qingan (Institute of Medical Research, Northwestern Polytechnical University) ;
  • Sun, Yan (College of Life Science, Shaanxi Normal University) ;
  • Li, Zhi (College of Life Science, Shaanxi Normal University)
  • Received : 2022.02.04
  • Accepted : 2022.02.21
  • Published : 2022.04.28

Abstract

American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (31400057); the Natural Science Basic Research Program of Shaanxi (2014JM3067, 2020JM293); the Shaanxi Key Research and Development Program (2021ZDLNY05-08); the Science and Technology Project of Shaanxi Academy of Science (2018NK-08); and the Fundamental Research Funds for the Central Universities (GK201604009, GK201902010).

References

  1. Szczuka D, Nowak A, Zaklos-Szyda M, Kochan E, Szymanska G, Motyl I, et al. 2019. American Ginseng (Panax quinquefolium L.) as a source of bioactive phytochemicals with pro-health properties. Nutrients 11: 1041. https://doi.org/10.3390/nu11051041
  2. Xue P, Yao Y, Yang X, Feng J, Ren G. 2017. Improved antimicrobial effect of ginseng extract by heat transformation. J. Ginseng Res. 41: 180-187. https://doi.org/10.1016/j.jgr.2016.03.002
  3. Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS. 2018. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J. Ginseng Res. 42: 239-247. https://doi.org/10.1016/j.jgr.2017.03.011
  4. Huang X, Liu Y, Zhang Y, Li S-P, Yue H, Chen C-B, et al. 2019. Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MSn. J. Ginseng Res. 43: 27-37. https://doi.org/10.1016/j.jgr.2017.08.001
  5. Jiao X-L, Zhang X-S, Lu X-H, Qin R, Bi Y-M, Gao W-W. 2019. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci. Rep. 9: 8615. https://doi.org/10.1038/s41598-019-44530-7
  6. Xiao C, Yang L, Zhang L, Liu C, Han M. 2016. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J. Ginseng Res. 40: 28-37. https://doi.org/10.1016/j.jgr.2015.04.004
  7. Chung I-M, Lee T-J, Oh Y-T, Ghimire BK, Jang I-B, Kim S-H. 2017. Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type. J. Ginseng Res. 41: 195-200. https://doi.org/10.1016/j.jgr.2016.03.004
  8. Wang F, Suo Y, Wei H, Li M, Xie C, Wang L, et al. 2015. Identification and characterization of 40 isolated Rehmannia glutinosa MYB family genes and their expression profiles in response to shading and continuous cropping. IJMS 16: 15009-15030. https://doi.org/10.3390/ijms160715009
  9. Fengjie L. 2010. Advances in research on allelopathy of ginseng and American ginseng. Zhongguo Zhong Yao Za Zhi 35: 2221-2226.
  10. Wei W, Yang M, Liu Y, Huang H, Ye C, Zheng J, et al. 2018. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 633: 796-807. https://doi.org/10.1016/j.scitotenv.2018.03.219
  11. Zhang J, Fan S, Qin J, Dai J, Zhao F, Gao L, et al. 2020. Changes in the microbiome in the soil of an American Ginseng continuous plantation. Front. Plant Sci. 11: 572199. https://doi.org/10.3389/fpls.2020.572199
  12. Dong L, Xu J, Zhang L, Yang J, Liao B, Li X, et al. 2017. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. 12: 18. https://doi.org/10.1186/s13020-017-0139-8
  13. Zhu B, Wu J, Ji Q, Wu W, Dong S, Yu J, et al. 2020. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ. 8: e8905. https://doi.org/10.7717/peerj.8905
  14. DesRochers N, Walsh JP, Renaud JB, Seifert KA, Yeung KK-C, Sumarah MW. 2020. Metabolomic profiling of fungal pathogens responsible for root rot in American Ginseng. Metabolites 10: 35. https://doi.org/10.3390/metabo10010035
  15. Lu XH, Zhang XM, Jiao XL, Hao JJ, Zhang XS, Luo Y, et al. 2020. Taxonomy of fungal complex causing red-skin root of Panax ginseng in China. J. Ginseng Res. 44: 506-518. https://doi.org/10.1016/j.jgr.2019.01.006
  16. Shade A, Handelsman J. 2012. Beyond the Venn diagram: the hunt for a core microbiome: the hunt for a core microbiome. Environ. Microbiol. 14: 4-12. https://doi.org/10.1111/j.1462-2920.2011.02585.x
  17. Lemanceau P, Blouin M, Muller D, Moenne-Loccoz Y. 2017. Let the core microbiota be functional. Trends Plant Sci. 22: 583-595. https://doi.org/10.1016/j.tplants.2017.04.008
  18. Zhang J, Wei L, Yang J, Ahmed W, Wang Y, Fu L, et al. 2020. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng. Front. Microbiol. 11: 701. https://doi.org/10.3389/fmicb.2020.00701
  19. Zhang B, Peng Y, Zhang Z, Liu H, Qi Y, Liu S, et al. 2010. GAP Production of TCM Herbs in China. Planta Med. 76: 1948-1955. https://doi.org/10.1055/s-0030-1250527
  20. Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, et al. 2016. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc. Natl. Acad. Sci. USA 113: 2312-2317. https://doi.org/10.1073/pnas.1523264113
  21. Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, et al. 2018. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun 9: 4894. https://doi.org/10.1038/s41467-018-07343-2
  22. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  23. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4: e2584. https://doi.org/10.7717/peerj.2584
  24. Edgar RC. 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34: 2371-2375. https://doi.org/10.1093/bioinformatics/bty113
  25. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16: 410-422. https://doi.org/10.1038/s41579-018-0029-9
  26. Bacci G, Bani A, Bazzicalupo M, Ceccherini MT, Galardini M, Nannipieri P, et al. 2015. Evaluation of the performances of ribosomal database project (RDP) classifier for taxonomic assignment of 16S rRNA metabarcoding sequences generated from illumina-solexa NGS. J. Genomics 3: 36-39. https://doi.org/10.7150/jgen.9204
  27. Qu B, Liu Y, Sun X, Li S, Wang X, Xiong K, et al. 2019. Effect of various mulches on soil physico-Chemical properties and tree growth (Sophora japonica) in urban tree pits. PLoS One 14: e0210777. https://doi.org/10.1371/journal.pone.0210777
  28. Bradstreet RB. 1954. Kjeldahl method for organic nitrogen. Anal. Chem. 26: 185-187. https://doi.org/10.1021/ac60085a028
  29. Khan SA, Mulvaney RL, Mulvaney CS. 1997. Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water. Soil Sci. Soc. Am. J. 61: 936-942. https://doi.org/10.2136/sssaj1997.03615995006100030032x
  30. Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  31. Wolf AM, Baker DE. 1985. Comparisons of soil test phosphorus by Olsen, Bray P1, Mehlich I and Mehlich III methods. Commun. Soil Sci. Plant Anal 16: 467-484. https://doi.org/10.1080/00103628509367620
  32. Attoe OJ, Truog E. 1947. Rapid photometric determination of exchangeable potassium and sodium. Soil Sci. Soc. Am. J. 11: 221-226. https://doi.org/10.2136/sssaj1947.036159950011000C0042x
  33. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. 2017. Microbiome analyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45: W180-W188. https://doi.org/10.1093/nar/gkx295
  34. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
  35. Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6: 1653-1664. https://doi.org/10.1038/ismej.2012.22
  36. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
  37. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MP de C, et al. 2013. Mantel test in population genetics. Genet. Mol. Biol. 36: 475-485. https://doi.org/10.1590/S1415-47572013000400002
  38. Chave J. 2004. Neutral theory and community ecology: neutral theory and community ecology. Ecol. Lett. 7: 241-253. https://doi.org/10.1111/j.1461-0248.2003.00566.x
  39. Li TSC. 1995. Asian and American Ginseng-A review. Horttechnology 5: 27-34. https://doi.org/10.21273/horttech.5.1.27
  40. Wang Q, Sun H, Li M, Xu C, Zhang Y. 2020. Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode. Front. Plant Sci. 11: 563240. https://doi.org/10.3389/fpls.2020.563240
  41. Ji L, Tian L, Nasir F, Chang J, Chang C, Zhang J, et al. 2021. Impacts of replanting American ginseng on fungal assembly and abundance in response to disease outbreaks. Arch Microbiol. 203: 2157-2170. https://doi.org/10.1007/s00203-021-02196-8
  42. Zhao J, Li Y, Wang B, Huang X, Yang L, Lan T, et al. 2017. Comparative soil microbial communities and activities in adjacent Sanqi ginseng monoculture and maize-Sanqi ginseng systems. Appl. Soil Ecol. 120: 89-96. https://doi.org/10.1016/j.apsoil.2017.08.002
  43. Ji W, Leng X, Jin Z, Li H. 2019. Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng. Acta Agric. Scand. Section B- Soil Plant Sci. 69: 135-146.
  44. Liu N, Shao C, Sun H, Liu Z, Guan Y, Wu L, et al. 2020. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 363: 114155. https://doi.org/10.1016/j.geoderma.2019.114155
  45. Ji L, Nasir F, Tian L, Chang J, Sun Y, Zhang J, et al. 2021. Outbreaks of root rot disease in different aged American Ginseng plants are associated with field microbial dynamics. Front. Microbiol. 12: 676880. https://doi.org/10.3389/fmicb.2021.676880
  46. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100. https://doi.org/10.1126/science.1203980
  47. Zhou J, Guan D, Zhou B, Zhao B, Ma M, Qin J, et al. 2015. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 90: 42-51. https://doi.org/10.1016/j.soilbio.2015.07.005
  48. Wang Q, Sun H, Xu C, Ma L, Li M, Shao C, et al. 2019. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil Ecol. 138: 245-252. https://doi.org/10.1016/j.apsoil.2019.03.012
  49. Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, et al. 2018. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 126: 151-158. https://doi.org/10.1016/j.soilbio.2018.08.021
  50. Tong A-Z, Liu W, Liu Q, Xia G-Q, Zhu J-Y. 2021. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages. BMC Microbiol. 21: 18. https://doi.org/10.1186/s12866-020-02081-2
  51. Dams RI, Paton GI, Killham K. 2007. Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68: 864-870. https://doi.org/10.1016/j.chemosphere.2007.02.014
  52. Jia Y, Eltoukhy A, Wang J, Li X, Hlaing TS, Aung MM, et al. 2020. Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase. IJMS 21: 3588. https://doi.org/10.3390/ijms21103588
  53. Wanees AE, Zaslow SJ, Potter SJ, Hsieh BP, Boss BL, Izquierdo JA. 2018. Draft genome sequence of the plant growth-promoting Sphingobium sp. strain AEW4, isolated from the rhizosphere of the beachgrass Ammophila breviligulata. Genome Announc. 6: e00410-18.
  54. Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569. https://doi.org/10.1007/s00299-018-2328-z
  55. Jiang J, Yu M, Hou R, Li L, Ren X, Jiao C, et al. 2019. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 438: 143-156. https://doi.org/10.1007/s11104-018-03928-4
  56. Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H. 2019. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Safety 167: 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  57. Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8: 137. https://doi.org/10.1186/s40168-020-00892-z
  58. Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6: 47-51. https://doi.org/10.1016/j.rhisph.2018.02.003
  59. Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  60. Lazcano C, Boyd E, Holmes G, Hewavitharana S, Pasulka A, Ivors K. 2021. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 11: 3188. https://doi.org/10.1038/s41598-021-82768-2
  61. Chialva M, Lanfranco L, Bonfante P. 2022. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73: 135-142. https://doi.org/10.1016/j.copbio.2021.07.003
  62. Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9: 2738. https://doi.org/10.1038/s41467-018-05122-7