Acknowledgement
This study was supported by the National Natural Science Foundation of China (31400057); the Natural Science Basic Research Program of Shaanxi (2014JM3067, 2020JM293); the Shaanxi Key Research and Development Program (2021ZDLNY05-08); the Science and Technology Project of Shaanxi Academy of Science (2018NK-08); and the Fundamental Research Funds for the Central Universities (GK201604009, GK201902010).
References
- Szczuka D, Nowak A, Zaklos-Szyda M, Kochan E, Szymanska G, Motyl I, et al. 2019. American Ginseng (Panax quinquefolium L.) as a source of bioactive phytochemicals with pro-health properties. Nutrients 11: 1041. https://doi.org/10.3390/nu11051041
- Xue P, Yao Y, Yang X, Feng J, Ren G. 2017. Improved antimicrobial effect of ginseng extract by heat transformation. J. Ginseng Res. 41: 180-187. https://doi.org/10.1016/j.jgr.2016.03.002
- Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS. 2018. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J. Ginseng Res. 42: 239-247. https://doi.org/10.1016/j.jgr.2017.03.011
- Huang X, Liu Y, Zhang Y, Li S-P, Yue H, Chen C-B, et al. 2019. Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MSn. J. Ginseng Res. 43: 27-37. https://doi.org/10.1016/j.jgr.2017.08.001
- Jiao X-L, Zhang X-S, Lu X-H, Qin R, Bi Y-M, Gao W-W. 2019. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci. Rep. 9: 8615. https://doi.org/10.1038/s41598-019-44530-7
- Xiao C, Yang L, Zhang L, Liu C, Han M. 2016. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J. Ginseng Res. 40: 28-37. https://doi.org/10.1016/j.jgr.2015.04.004
- Chung I-M, Lee T-J, Oh Y-T, Ghimire BK, Jang I-B, Kim S-H. 2017. Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type. J. Ginseng Res. 41: 195-200. https://doi.org/10.1016/j.jgr.2016.03.004
- Wang F, Suo Y, Wei H, Li M, Xie C, Wang L, et al. 2015. Identification and characterization of 40 isolated Rehmannia glutinosa MYB family genes and their expression profiles in response to shading and continuous cropping. IJMS 16: 15009-15030. https://doi.org/10.3390/ijms160715009
- Fengjie L. 2010. Advances in research on allelopathy of ginseng and American ginseng. Zhongguo Zhong Yao Za Zhi 35: 2221-2226.
- Wei W, Yang M, Liu Y, Huang H, Ye C, Zheng J, et al. 2018. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 633: 796-807. https://doi.org/10.1016/j.scitotenv.2018.03.219
- Zhang J, Fan S, Qin J, Dai J, Zhao F, Gao L, et al. 2020. Changes in the microbiome in the soil of an American Ginseng continuous plantation. Front. Plant Sci. 11: 572199. https://doi.org/10.3389/fpls.2020.572199
- Dong L, Xu J, Zhang L, Yang J, Liao B, Li X, et al. 2017. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. 12: 18. https://doi.org/10.1186/s13020-017-0139-8
- Zhu B, Wu J, Ji Q, Wu W, Dong S, Yu J, et al. 2020. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ. 8: e8905. https://doi.org/10.7717/peerj.8905
- DesRochers N, Walsh JP, Renaud JB, Seifert KA, Yeung KK-C, Sumarah MW. 2020. Metabolomic profiling of fungal pathogens responsible for root rot in American Ginseng. Metabolites 10: 35. https://doi.org/10.3390/metabo10010035
- Lu XH, Zhang XM, Jiao XL, Hao JJ, Zhang XS, Luo Y, et al. 2020. Taxonomy of fungal complex causing red-skin root of Panax ginseng in China. J. Ginseng Res. 44: 506-518. https://doi.org/10.1016/j.jgr.2019.01.006
- Shade A, Handelsman J. 2012. Beyond the Venn diagram: the hunt for a core microbiome: the hunt for a core microbiome. Environ. Microbiol. 14: 4-12. https://doi.org/10.1111/j.1462-2920.2011.02585.x
- Lemanceau P, Blouin M, Muller D, Moenne-Loccoz Y. 2017. Let the core microbiota be functional. Trends Plant Sci. 22: 583-595. https://doi.org/10.1016/j.tplants.2017.04.008
- Zhang J, Wei L, Yang J, Ahmed W, Wang Y, Fu L, et al. 2020. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng. Front. Microbiol. 11: 701. https://doi.org/10.3389/fmicb.2020.00701
- Zhang B, Peng Y, Zhang Z, Liu H, Qi Y, Liu S, et al. 2010. GAP Production of TCM Herbs in China. Planta Med. 76: 1948-1955. https://doi.org/10.1055/s-0030-1250527
- Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, et al. 2016. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc. Natl. Acad. Sci. USA 113: 2312-2317. https://doi.org/10.1073/pnas.1523264113
- Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, et al. 2018. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun 9: 4894. https://doi.org/10.1038/s41467-018-07343-2
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Rognes T, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4: e2584. https://doi.org/10.7717/peerj.2584
- Edgar RC. 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34: 2371-2375. https://doi.org/10.1093/bioinformatics/bty113
- Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16: 410-422. https://doi.org/10.1038/s41579-018-0029-9
- Bacci G, Bani A, Bazzicalupo M, Ceccherini MT, Galardini M, Nannipieri P, et al. 2015. Evaluation of the performances of ribosomal database project (RDP) classifier for taxonomic assignment of 16S rRNA metabarcoding sequences generated from illumina-solexa NGS. J. Genomics 3: 36-39. https://doi.org/10.7150/jgen.9204
- Qu B, Liu Y, Sun X, Li S, Wang X, Xiong K, et al. 2019. Effect of various mulches on soil physico-Chemical properties and tree growth (Sophora japonica) in urban tree pits. PLoS One 14: e0210777. https://doi.org/10.1371/journal.pone.0210777
- Bradstreet RB. 1954. Kjeldahl method for organic nitrogen. Anal. Chem. 26: 185-187. https://doi.org/10.1021/ac60085a028
- Khan SA, Mulvaney RL, Mulvaney CS. 1997. Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water. Soil Sci. Soc. Am. J. 61: 936-942. https://doi.org/10.2136/sssaj1997.03615995006100030032x
- Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
- Wolf AM, Baker DE. 1985. Comparisons of soil test phosphorus by Olsen, Bray P1, Mehlich I and Mehlich III methods. Commun. Soil Sci. Plant Anal 16: 467-484. https://doi.org/10.1080/00103628509367620
- Attoe OJ, Truog E. 1947. Rapid photometric determination of exchangeable potassium and sodium. Soil Sci. Soc. Am. J. 11: 221-226. https://doi.org/10.2136/sssaj1947.036159950011000C0042x
- Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. 2017. Microbiome analyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45: W180-W188. https://doi.org/10.1093/nar/gkx295
- Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
- Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6: 1653-1664. https://doi.org/10.1038/ismej.2012.22
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
- Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MP de C, et al. 2013. Mantel test in population genetics. Genet. Mol. Biol. 36: 475-485. https://doi.org/10.1590/S1415-47572013000400002
- Chave J. 2004. Neutral theory and community ecology: neutral theory and community ecology. Ecol. Lett. 7: 241-253. https://doi.org/10.1111/j.1461-0248.2003.00566.x
- Li TSC. 1995. Asian and American Ginseng-A review. Horttechnology 5: 27-34. https://doi.org/10.21273/horttech.5.1.27
- Wang Q, Sun H, Li M, Xu C, Zhang Y. 2020. Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode. Front. Plant Sci. 11: 563240. https://doi.org/10.3389/fpls.2020.563240
- Ji L, Tian L, Nasir F, Chang J, Chang C, Zhang J, et al. 2021. Impacts of replanting American ginseng on fungal assembly and abundance in response to disease outbreaks. Arch Microbiol. 203: 2157-2170. https://doi.org/10.1007/s00203-021-02196-8
- Zhao J, Li Y, Wang B, Huang X, Yang L, Lan T, et al. 2017. Comparative soil microbial communities and activities in adjacent Sanqi ginseng monoculture and maize-Sanqi ginseng systems. Appl. Soil Ecol. 120: 89-96. https://doi.org/10.1016/j.apsoil.2017.08.002
- Ji W, Leng X, Jin Z, Li H. 2019. Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng. Acta Agric. Scand. Section B- Soil Plant Sci. 69: 135-146.
- Liu N, Shao C, Sun H, Liu Z, Guan Y, Wu L, et al. 2020. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 363: 114155. https://doi.org/10.1016/j.geoderma.2019.114155
- Ji L, Nasir F, Tian L, Chang J, Sun Y, Zhang J, et al. 2021. Outbreaks of root rot disease in different aged American Ginseng plants are associated with field microbial dynamics. Front. Microbiol. 12: 676880. https://doi.org/10.3389/fmicb.2021.676880
- Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100. https://doi.org/10.1126/science.1203980
- Zhou J, Guan D, Zhou B, Zhao B, Ma M, Qin J, et al. 2015. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 90: 42-51. https://doi.org/10.1016/j.soilbio.2015.07.005
- Wang Q, Sun H, Xu C, Ma L, Li M, Shao C, et al. 2019. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil Ecol. 138: 245-252. https://doi.org/10.1016/j.apsoil.2019.03.012
- Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, et al. 2018. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 126: 151-158. https://doi.org/10.1016/j.soilbio.2018.08.021
- Tong A-Z, Liu W, Liu Q, Xia G-Q, Zhu J-Y. 2021. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages. BMC Microbiol. 21: 18. https://doi.org/10.1186/s12866-020-02081-2
- Dams RI, Paton GI, Killham K. 2007. Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68: 864-870. https://doi.org/10.1016/j.chemosphere.2007.02.014
- Jia Y, Eltoukhy A, Wang J, Li X, Hlaing TS, Aung MM, et al. 2020. Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase. IJMS 21: 3588. https://doi.org/10.3390/ijms21103588
- Wanees AE, Zaslow SJ, Potter SJ, Hsieh BP, Boss BL, Izquierdo JA. 2018. Draft genome sequence of the plant growth-promoting Sphingobium sp. strain AEW4, isolated from the rhizosphere of the beachgrass Ammophila breviligulata. Genome Announc. 6: e00410-18.
- Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569. https://doi.org/10.1007/s00299-018-2328-z
- Jiang J, Yu M, Hou R, Li L, Ren X, Jiao C, et al. 2019. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 438: 143-156. https://doi.org/10.1007/s11104-018-03928-4
- Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H. 2019. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Safety 167: 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
- Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8: 137. https://doi.org/10.1186/s40168-020-00892-z
- Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6: 47-51. https://doi.org/10.1016/j.rhisph.2018.02.003
- Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
- Lazcano C, Boyd E, Holmes G, Hewavitharana S, Pasulka A, Ivors K. 2021. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 11: 3188. https://doi.org/10.1038/s41598-021-82768-2
- Chialva M, Lanfranco L, Bonfante P. 2022. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73: 135-142. https://doi.org/10.1016/j.copbio.2021.07.003
- Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9: 2738. https://doi.org/10.1038/s41467-018-05122-7