• Title/Summary/Keyword: Bacterial community structure

Search Result 202, Processing Time 0.023 seconds

A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju (광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구)

  • Sun-Jung Kim;Ji-Young Park;Seung-Ho Kim;Min-Hwa Lim;Ji-Yong Yu;Kyu-Sung Han;Se-Il Park;Gwangyeob Seo;Gwangwoon Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.

Analysis of Microbial Community Structure in Soil and Crop Root System II. Analysis of soil microbial community structure in different soil Environmental conditions by MIDI and DNA analyses (토양과 작물근계의 미생물군집 구조 해석 II. MIDI 및 DNA 분석에 의한 토양환경별 미생물 군집 해석)

  • Ryu, Jin-Chang;Kwon, Soon-Wo;Kim, Jong-Shik;Suh, Jang-Sun;Jung, Beung-Gan;Choi, Sun-Shik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.118-126
    • /
    • 2002
  • To evaluate the correlations of microbial populations with soil healthiness and crop production and establish the criteria for microbial population of soil types. We analyzed the microbial community structure of 13 soils which were different in physical and chemical properties and cultivation methods. According to the analysis of microbial population suing the dilution plate method, the large differences of the microbial population structures among soil types were shown: aerobic bacteria $2-27{\times}10^6$, fluorescent Pseudomonas $1-1,364{\times}10^5$, Gram negative bacteria $1-126{\times}10^4$, and mesophilic Bacillus $1-110{\times}10^5$. The density of Gram negative bacteria was highest on red pepper cultivating soils (sample no. 4 and 6) of Umsung and Gesan, Chungbuk, and the density of the fluorescent Pseudomonas was highest on greenhouse soil (sample no. 7) of Jinju, Kyungnam. The crop productivity of three soils was high as compared with those of other soils. It was supposed that the density of fluorescent Pseudomonas and mesophilic Bacillus were correlated with the incresed crop production. By MIDI analysis, 579 strains isolated from 13 soils composed of a variety of microbes including 102 isolates of Agrobacterium, 112 isolates of Bacillus, 32 isolates of Pseudomonas, 44 isolates of Kocuria, and 34 isolates of Pseudomonas. Among the 624 isolates of Gram negative bacteria, Pseudomonas including P. putida and p. fluorescens occupied the highest density (51%), and Stenotrophomonas maltophilia and Burkholderia cepacia also appeared at high density. From RAPD analysis, the fluorescent Pseudomonas strains isolated from 13 soil types showed a high level of strain diversities and were grouped into 2 - 14 patterns according to soil types. Many of unknown bacteria were recovered from the paddy soil, and needed to be further characterized on the molecular basis.

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

  • Lim, SooYeon;Seo, Jaehyun;Choi, Hyunbong;Yoon, Duhak;Nam, Jungrye;Kim, Heebal;Cho, Seoae;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1144-1151
    • /
    • 2013
  • In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below $E^{-10}$ using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4) were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below $10^{-5}$. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence (16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성)

  • Choi, Gang-Guk;Lee, Oh-Hyung;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.307-312
    • /
    • 2003
  • To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.

Characterization of Water Quality and Microbial Communities in Rivers in Changwon city (창원시 하천의 수질 및 미생물상 분석)

  • Kim Sun-A;Kim Chung-Hye;Lim Byung-Ran;Cho Kwang-Hyun;Park Hee-Chang;Joo Woo Hong
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.148-155
    • /
    • 2006
  • The diversity of bacterial populations in rivers flowing through Changwon City, was investigated using quinone profiling. The physicochemical properties such as temperature, pH, dissolved oxygen(DO), dissolved organic carbon (DOC) and biochemical oxygen demand (BOD) were also measured in this study. Ubiquinone (UQ)-8, UQ-9 and UQ-10 were observed in all samples for the sites investigated. UQ-8 was the -predominant quinone species in rivers except for Namch'on downstream, T'owolch'on, and Kaumchongch'on in autumn, while UQ-8 was also found as major quinones in the sample except for Hanamch'on, T'owolch'on, Kaumchongch'on, and Namsanch'on in winter. A higher concentration of DOC in rivers yield high concentration of plastoquinone (PQ-9) in autumn and those of total quinones in winter, respectively. Correlation analysis also indicate that BOD is considered to be a major factor controlling the concentration of PQ in rivers.

Changes in gut microbiota with mushroom consumption (버섯 섭취와 장내 미생물 균총의 변화)

  • Kim, Eui-Jin;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2021
  • Mushroom consumption causes changes in the immune system and gut microbiota via the actions of mushroom probiotic components. β-Glucan structure-related substances suppress secretion of inflammatory mediators, and induce macrophage activation, enhancing immunity and immune function. Substances other than directly useful components can be metabolized into short-chain fatty acids by gut microbiota. These short-chain fatty acids can then induce immunity, alleviating various diseases. Substances used to stimulate growth of health-promoting gut bacteria, thereby changing the gut microbiota community are defined to be probiotics. Probiotic altered intestinal microflora can prevent various types of bacterial infection from external sources, and can help to maintain immune system balance, thus preventing diseases. Research into beneficial components of Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Auricularia auricula-judae, and Agaricus bisporus, which are frequently consumed in Korea, changes in microbiota, changes in short-chain fatty acids, and correlations between consumption and health contribute to our understanding of the effects of dietary mushrooms on disease prevention and mitigation.

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Characteristics of Heterotrophic Bacterial Population in the Artificial Lake Geumgang Near Estuary Barrage (금강 하구둑 인근에서 미생물군집의 특성)

  • Bae, Myoung-Sook;Park, Suhk-Hwan;Choi, Gang-Guk;Lee, Keun-Kwang;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2005
  • The monthly variations of physico-chemical and microbiological water quality were investigate in the artificial Lake Geumgang near estuary barrage. Sixty heterotrophic bacteria were isolated and identified by amplification and sequencing of 16S rDNA. Water temperature, pH, and inorganic nutrients($NH_4$-N, $NO_2$-N, $NO_3$-N, $PO_4$-P) were measured. Concentrations of DO, BOD, and inorganic nutrients were lower than in the middle-stream of Geum river The population densities of heterotrophic bacteria and total coliforms varied from $4.1{\pm}1.0\times10^2$ to $6.7{\pm}1.1{\times}10^3\;cfu\;ml^{-1}$, and 0 to $2.3{\pm}0.6{\times}10^2\;cfu\;ml^{-1}$, respectively. Among the measured numbers of physiological groups of bacteria, cellulolytic bacteria showed higher population densities than those of other physiological groups. Bacterial community structure was analysed based on 16S rDNA partial sequencing. Among 60 isolates, dominant genus was Pseudomones (20 strains).