• Title/Summary/Keyword: Bacterial Isolates

Search Result 856, Processing Time 0.035 seconds

Phenotypic Characteristics of Pseudomonas syringae pv. actinidiae Strains from Different Geographic Origins (지리적 기원이 다른 Pseudomonas syringae pv. actinidiae 균주들의 표현형적 특성)

  • Choi, Eun Jin;Lee, Young Sun;Kim, Gyoung Hee;Koh, Young Jin;Jung, Jae Sung
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.245-248
    • /
    • 2014
  • Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker in kiwifruit (genus Actinidia). Multilocus sequence analysis of seven housekeeping and 11 type III effector genes differentiated the virulent P. syringae pv. actinidiae isolates worldwide into three groups designated as Psa1-Psa3. In this work, a total of 12 P. syringae pv. Actinidiae strains, including three Psa1, three Psa2, three Psa3 strains isolated from Korea and three Psa3 strains from Italy, were compared based on their phenotypic properties. Strains with different geographic origins had unique growth patterns as demonstrated by growth rate at several temperatures; all tested strains exhibited maximum growth at temperatures below $22^{\circ}C$, while the growth of Psa3 strains was completely inhibited above $30^{\circ}C$. Psa3 strains isolated from Korea had longer lag phases than the Psa3 strains from Italy. The Psa2 strains were different from Psa1 and Psa3 strains in the API 20NE test, in which the Psa2 strains could not utilize potassium gluconate, capric acid and trisodium citrate. Psa3 strains isolated from Korea could hydrolyze esculin. The API ZYM test showed that ${\beta}$-glucosidase activity was detected only from Psa3 strains. The strains belonging to the three Psa groups differed with regard to their susceptibility to ampicillin, novobiocin, and oleandomycin.

Successful Treatment of Severe Bumble foot in a Northern Goshawk (Accipiter gentilis) (북방 참매에서 발생한 Bumble foot의 성공적인 치료 증례)

  • Chung, Tae-ho;Oh, Seungkuk;Kim, Jung-Hyun;Kim, Hyun-Ju;Park, Chul
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.268-271
    • /
    • 2015
  • About 2-year old northern goshawk (Accipiter gentilis) which is designated as natural monument (#323-1) in Republic of Korea was rescued by a local farmer and presented with a 2-weeks history of pain, swelling, stiffness and limping. On physical examination, plantar pododermatitis and digit IV weakness were observed. Radiographic findings also showed bone lyses with soft tissue swelling in the foot. A definite diagnosis was made as stage III bumble foot after multidisciplinary approach of the patient. Bacterial culture was performed, and concurrently antibiotic susceptibility testing is determined using wound site exudates specimen. Bacterial isolates were identified as Staphylococcus aureus, known normal skin flora. Treatment was initiated with surgical incision and necrotized tissues removal. Lavage-drainage and ball bandage were applied with topical mupirocin ointment application. Doughnut shaped pad was attached on bottom of the ball bandage to reduce weight bearing. After three weeks of intensive care, the wound site completely healed but digit IV weakness remained permanently. The goshawk returned to nature after eight weeks after treatment.

Occurrence of Atypical Aeromonas Salmonicida in Mandarin Fish (SSOGARI: Korean Name) Siniperca Scherzeri (양식 쏘가리에서 Atypical Aeromonas Salmonicida의 발병)

  • Park, Seong-Bin;Nho, Seong-Won;Jang, Ho-Bin;Cha, In-Seok;Kim, Young-Rim;Ha, Mi-Ae;Kang, Sang-Chul;Kim, Jae-Hoon;Jung, Tae-Sung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.289-294
    • /
    • 2010
  • Mandarin fish (SSOGARI: Korean name) has emerged as new aquaculture and aquarium fish among Korean native fish species. Unfortunately, this fish could not exempt from infectious agent invasion. As an epidemiological survey, high mortality of mandarin fish (Siniperca scherzeri) observed from a fish farm in Gyeongnam province of South Korea. The major macroscopic sign of the diseased fish was severe multifocal dermal ulceration. Histological observation revealed inflammation, necrosis and colonization of bacteria in various tissues. Seven bacterial isolates from the diseased fish were identified as Aeromonas salmonicida subsp. salmonicida (typical A. salmonicida) using API 20E and 20NE system. However, the polymerase chain reaction (PCR) assay using two different primers (AP and MIY) revealed that the bacterial strains were not typical A. salmonicida, but atypical A. salmonicida. This study demonstrates that PCR assay is a reliable method for the confirmation of atypical A. salmonicida in mandarin fish as compared to biochemical tests. Furthermore, this is the first account of extensive dermatitis in mandarin fish due to atypical A. salmonicida infection, which has high potential in aquaculture and aquarium fish among native fish species.

Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper (길항세균 Bacillus sp. KBC1004를 이용한 고추탄저병의 생물학적 방제제 개발)

  • Kang, Hoon-Serg;Kang, Jae-Gon;Park, Jeong-Chan;Lee, Young-Ui;Jeong, Yoon-Woo;Kim, Jeong-Jun;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2015
  • To develop an effective biopesticide to control pepper anthracnose disease, an isolate which showed strong inhibitory effect on the mycelial growth and conidial germination of Colletotrichum acutatum was selected among the antagonistic bacterial isolates collected from pepper grown soil. The bacterial isolate was identified as Bacillus sp. KBC1004 using 16S rRNA sequence analysis. The liquid culture of KBC1004 was freeze-dried and formulated as a wettable powder(WP). The wettable powder form of KBC1004 required at least 24 hours to activate and to inhibit the conidial germination of C. acutatum. In vitro bioassay using the detached green pepper fruits, biocontrol activity of the WP was not recognizable in simultaneous inoculation, but significant disease suppression was observed pre-treatment (24 hr) of the WP before pathogen inoculation. In field experiment, 4 times foliar applications of the 1/500 diluted wettable powder from the end of June showed great control efficacy similar to that of the chemical fungicide application. These results suggest that the formulated WP product could be an alternative mean to control of pepper anthracnose disease in environmentally friendly farming practices.

Effect of Spent Mushroom Compost on Tomato Growth after Cultivation of Button Mushroom, Agaricus bisporus. (양송이버섯 재배 후 폐상퇴비가 토마토 생육에 미치는 영향)

  • Lee, Chan-Jung;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Yu, Hyung-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.83-94
    • /
    • 2009
  • This study was carried out to investigate the effect of application of spent mushroom compost(SMC) on soil chemical properties and tomato growth. After the mushroom has been harvested, the SMC contains a lot of organic material, different microorganism and high density of mushroom hypha. SMC of white button mushroom(Agaricus bisporus) contained diverse microorganisms including fluorescent Pseudomonas sp. and actinomycetes. These isolates showed strong antagonistic to bacterial wi1t(Ralstonia solanacearum) and fusarium wi1t(Fusarium oxysporum) of tomato. The growth and sugar content of tomato showed no significant difference with other treatments by stage of maturity. The EC, exchangeable K and Ca contents of the soil during growing stage were increased in comparison to those of farmhouse practice, but available phosphate decreased. Microbial population in the soil in all growing stages showed no significant difference with other treatments, but yield of tomato decreased in some way in comparison to farmhouse practice. As the result of analysis on chemical property of soil and plant growth and yield of tomato, it seems likely that SMC of white button mushroom(Agaricus bisporus) may be used as substitute of practice compost on cultivation of tomato.

  • PDF

Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 (길항미생물 Bacillus subtilis GG95를 이용한 상추 균핵병의 생물학적 방제)

  • Lee, Hyun-Ju;Kim, Jin-Young;Lee, Jin-Gu;Hong, Soon-Sung
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.225-230
    • /
    • 2014
  • Sclerotinia sclerotiorum, a plant pathogenic fungus, can cause serious yield and quality losses in the winter lettuce field. For biological control of S. sclerotiorum, soil-born microorganisms that inhibit the mycelia growth of S. sclerotiorum and Fusarium oxysporum were isolated from diseased soil. Among the isolates, bacterial isolate, GG95, which was identified as Bacillus subtilis according to the morphological, physiological characteristics and by 16S rRNA similarity, showed the highest level of inhibitory activity. The growth conditions for B. subtilis GG95 were optimized in TSB media (pH 7) by culturing at $28^{\circ}C$ for 24 hrs. Maltose or fructose and peptone were selected as the best carbon and nitrogen sources, respectively. Greenhouse experiment was performed to test effectiveness of B. subtilis GG95 in the control sclerotinia rot. Drench application ($1{\times}10^8cfu/mL$, 3 times) of the bacterial culture broth to lettuce showed an effectiveness value of 88%, suggesting that B. subtilis GG95 would be a promising biocontrol agent for control of sclerotinia rot.

An Etiologic Study of Rabbit Dermatitis at Large Rabbit Farms in South Korea (집단 사육 되는 토끼에서 호발하는 피부병에 관한 병인론적 연구)

  • Kim, Sung-Ho;Lee, Jae-Hoon;Chang, Hwa-Seok;Kang, Eun-Hee;Chung, Dai-Jung;Kim, Hwi-Yool
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1499-1505
    • /
    • 2009
  • This study was carried out between August and September 2007 to determine the causative agents and epidemiologic features of rabbit dermatitis in Korea. Rabbits were shipped to the laboratory in the College of Veterinary Medicine from 10 rabbit farms. A total of 520 hair, blood, and skin specimens collected from skin lesions of 40 rabbits with suspected dermatopathy were examined mycologically, bacteriologically, and parasitologically. The positive rates of dermatophytosis, bacterial skin dermatitis, and ectoparasite dermatitis were 95, 92.5, and 7.5%, respectively. The etiologic agents of dermatophytosis were identified as Trichophyton mentagrophyte (95%), non-dermatophytic filamentous fungi such as Aspergillus s(5%), and Cryptococcus humilocus (2.5%). With respect to bacteria-related skin dermatitis, Staphylococcus coagulase negative was the most common etiological agent. Staphylococcus aureus was the second most frequent causative agent. Most of the pathogenic isolates were resistant to tetracycline, and aminoglycosides such as amikacin and gentamicin were the most effective drugs against the pathologic bacteria isolated. Ectoparasites were rarely detected in this study. Only Psoroptes cuniculis was detected in 3 (7.5%) out of the 40 tested rabbits. The role of ectoparasites as a causative agent of dermatitis in rabbits in this study was minimal. Our results provide important information related to rabbit dermatitis treatments and researches.

Isolation of a Phenol-degrading Bacterial Strain and Biological Treatment of Wastewater Containing Phenols (Phenol 분해균주의 분리 및 페놀함유 폐수의 생물학적 처리)

  • Lee, Hyun Don;Lee, Myoung Eun;Kim, Hyung Gab;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1273-1279
    • /
    • 2013
  • Aromatic hydrocarbons, such as phenol, have been detected frequently in wastewater, soil, and groundwater because of the extensive use of oil products. Bacterial strains (56 isolates) that degraded phenol were isolated from soil and industrial wastewater contaminated with hydrocarbons. GN13, which showed the best cell growth and phenol degradation, was selected for further analysis. The GN13 isolate was identified as Neisseria sp. based on the results of morphological, physiological, and biochemical taxonomic analyses and designated as Neisseria sp. GN13. The optimum temperature and pH for phenol removal of Neisseria sp. GN13 was $32^{\circ}C$ and 7.0, respectively. The highest cell growth occurred after cultivation for 30 hours in a jar fermentor using optimized medium containing 1,000 mg/l of phenol as the sole carbon source. Phenol was not detected after 27 hours of cultivation. Based on the analysis of catechol dioxygenase, it seemed that catechol was degraded through the meta- and ortho-cleavage pathway. Analysis of the biodegradation of phenol by Neisseria sp. GN13 in artificial wastewater containing phenol showed that the removal rate of phenol was 97% during incubation of 30 hours. The removal rate of total organic carbon (TOC) by Neisseria sp. GN13 and activated sludge was 83% and 78%, respectively. The COD removal rate by Neisseria sp. GN13 from petrochemical wastewater was about 1.3 times higher than that of a control containing only activated sludge.

Antifungal and Proteolytic Activity and Auxin Formation of Bacterial Strains Isolated from Highland Forest Soils of Halla Mountain (한라산 고지대 토양에서 분리한 미생물의 항균 및 단백질분해 활성, 오옥신 생산 특성)

  • Kim, Tack-Soo;Ko, Min-Jung;Lee, Se-Weon;Han, Ji-Hee;Park, Kyung-Seok;Park, Jin-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • Bacterial strains were isolated from forest soils of Halla mountain, Jeju island in Korea. The soil samples were collected at each altitude of 100m from 1,000 m above sea level. Total 398 strains were isolated and tested for their physiological characteristics of antagonistic and proteolytic activities, and auxin production. Among the isolates, 172 strains were selected as antifungal strains showing antagonistic activity against at least one of 8 plant fungal pathogens (Alternaria alternata, Botrytis cinerea, Collectotrichum acutatum, Fusarium oxysporum, Phytophthora capsici, Pythium ultimum and Sclerotinia sclerotiorum). In addition 203 strains for proteolytic activity and 26 strains for auxin production were characterized for further study. Je28-4 (Rhodococcus sp.) were showed 80% of control value against tomato gray mold in vivo. Thus, it is suggested that soil bacteria isolated from forest soils of Halla mountain can be important sources of bioactive compounds for improving plant growth or promising biocontrol agents.

First Report of Pseudomonas viridiflava Causing Leaf Spot of Cucumber in Korea (Pseudomonas viridiflava에 의한 오이 점무늬병의 발생 보고)

  • Seo, Yunhee;Park, Mi-Jeong;Back, Chang-Gi;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.328-331
    • /
    • 2018
  • A severe disease with leaf spots and necrotic symptoms was observed in cucumber (Cucumis sativus L.) seedlings in April 2018 at a nursery in Kimjae, Korea (35o 47'09.8"N 127o 2'24.3"E). The infected plants initially showed spots on water-soaked cotyledons which, at later stages, enlarged and spread to the leaves, which the lesions becoming dry and chlorotic. The symptomatic samples were collected from cucumber and the isolates were cultured on LB agar. The representative bacterial strain selected for identification showed fluorescent on King's medium B, was potato rot-positive, levan and arginine dihydrolase-negative, oxidase-negative and tobacco hypersensitivity-positive in LOPAT group 2 as determined by LOPAT tests. A pathogenicity test was carried out on a 3-week-old cucumber. After 3 days of inoculation, leaf spots and necrotic symptoms appeared on the cucumber, similar to the originally infected plants. The infecting bacterial strain was identified as Pseudomonas viridiflava, by 16S rDNA sequence analysis. This is the first report of leaf spot diseases on cucumber caused by P. viridiflava.