• Title/Summary/Keyword: Bacterial DNA

Search Result 1,100, Processing Time 0.025 seconds

Transformation of Bacillus brevis P176-2 with Plasmid DNA by Electroporation (전기천공법에 의한 Bacillus brevis P176-2의 형질전환)

  • 채기수;엄경일
    • The Korean Journal of Food And Nutrition
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1992
  • The optimum conditions and mechanisms for the plasmid-mediated genetic transformation of intact cells of Bacillus brevis Pl76-2, an extracellular protein producing bacterium by electroporation were investigated. It was found that pUB110 Plasmid DNA can be introduced into intact bacterial cells by electroporation. The frequency of transformation by this electroporation system depended upon the initial electric field strength, the capacity of the electric discharge capacitor, growth stage, number of successive pulses and composition of electroporation buffer. It was effective for transformation that cells were harvested, washed and resuspended with HSM [7M HEPES(PH 7.4), 272mM sucrose, 1 mM MgCl2] electroporation buffer when cell growth was attained to 1.2 at OD660. A maximum frequency of transformation of 2.40$\times$104 transformants per$\mu$g plasmid DNA was obtained by two succesive Pulses with an initial electric field strength of 12.5kV/cm and with a capacitance of 7.3uF.

  • PDF

Isolation and Characteristics of Photosynthetic Bacterium, Erythrobacter longus SY-46 which Produces Bacterial Carotenoids (Bacterial Carotenoids를 생산하는 광합성세균 Erythrobacter longus SY-46의 분리 및 특성)

  • Kim, Yun-Sook;Lee, Dae-Sung;Jeong, Seong-Yun;Lee, Won-Jae
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2008
  • The aerobic photosynthetic bacterium, which produces bacterial carotenoids was isolated and identified from coastal marine environments. This bacterium was identified by 16S rDNA sequencing and designated as Erythrobacter longus SY-46. E. longus SY-46 was Gram negative and rod shape, and the optimal culture conditions were $25^{\circ}C$, pH 7.0, and 3.0% NaCl concentration, respectively. The carbon and nitrogen sources required for the optimal growth were lactose and tryptone, respectively. Fatty acid compositions of E. longus SY-46 were $C_{18:1}$(78.32%), v-linolenic acid($C_{18:3n9.12.15c}:3.83%$), margaric acid($C_{17:0}$: 3.38%), palmitic acid($C_{16:0}$: 3.07%), and docosahexaenoic acid($C_{22:6n3}$: 2.21%). In addition, E. longus SY-46 showed the characteristic absorption peaks of bacterial carotenoids(in the region of 450 to 480 nm) and bacteriochlorophyll(770 to 772 nm). Major carotenoids of E. longus SY-46 were polyhydroxylated xanthophylls such as fucoxanthin and zeaxanthin.

Expression of Recombinant Human Cytochrome P450 1A2 in Escherichia coli Bacterial Mutagenicity Tester Strain

  • Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.305-309
    • /
    • 1998
  • Human cytochrome P450 1A2 is one of the major cytochrome P450s in human liver. It is known to be capable of activating a number of carcinogens such as arylamines and heterocyclic amines. In order to develop the new bacterial mutagenicity test system with human P450, a full length of human P450 1A2 cDNA inserted into pCW bacterial expression vector was introduced to Escherichia coli WP2 uvrA strain which is a well-known E. coli strain for bacterial reverse mutagenicity assay. Expressed human P450 1A2 showed typical P450 hemoprotein spectra. Maximum expression was achieved at 48 hrs after incubating at $30^{\circ}C$ in terrific broth containing ampicillin, IPTG and other supplements. High level expression of P450 1A2 in E. coli WP2 uvrA membranes was determined in SDS-PAGE. The well-known mutagens 2-aminoanthracene and MElQ increased the revertant colonies of E. coli WP2 uvrA expressing human P450 1A2 without an exogenous rat hepatic post-mitochondrial supernatant (S9 fraction) in a dose-dependent manner. The results show that the functional expression of human P450 in bacterial mutagenicity tester strain will provide a useful tool for studying the mechanism of the mutagenesis and carcinogenesis of new drugs and environmental chemicals.

  • PDF

Occurrence of Bacterial Stem Rot of Ranunculus asiaticus Caused by Pseudomonas marginalis in Korea

  • Li, Weilan;Ten, Leonid N.;Kim, Seung-Han;Lee, Seung-Yeol;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.138-144
    • /
    • 2018
  • In December 2016, stem rot symptoms were observed on Persian buttercup (Ranunculus asiaticus) plants in Chilgok, Gyeongbuk, Korea. In the early stage of the disease, several black spots appeared on the stem of infected plants. As the disease progressed, the infected stem cleaved and wilted. The causal agent was isolated from a lesion and incubated on Reasoner's 2A (R2A) agar at $25^{\circ}C$. Total genomic DNA was extracted for phylogenetic analysis. Based on the 16S rRNA gene analysis, the isolated strain was found to belong to the genus Pseudomonas. To identify the isolated bacterial strain at the species level, the nucleotide sequences of the gyrase B (gyrB) and RNA polymerase D (rpoD) genes were obtained and compared with the sequences in the GenBank database. As the result, the causal agent of the stem rot disease was identified as Pseudomonas marginalis. To determine the pathogenicity of the isolated bacterial strain, it was inoculated into the stem of healthy R. asiaticus plant, the inoculated plant showed a lesion with the same characteristics as the naturally infected plant. Based on these results, this is the first report of bacterial stem rot on R. asiaticus caused by P. marginalis in Korea.

Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

  • Kang, In Jeong;Kang, Mi-Hyung;Noh, Tae-Hwan;Shim, Hyeong Kwon;Shin, Dong Bum;Heu, Suggi
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the $63^{\circ}C$ as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

STATE-OF-THE-ART TECHNOLOGY USING GENETICALLY-ENGINEERED BIOLUMINESCENT BACTERIA AS ENVIRONMENTAL BIOSENSORS

  • Gu, Man-Bock
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.94-99
    • /
    • 2000
  • Bioluminescence is being used as a prevailing reporter of gene expression in microorganisms and mammalian cells. Bacterial bioluminescence draws special attention from environmental biotechnologists since it has many advantageous characteristics, such as no requirement of extra substractes, highly sensitive, and on-line measurability. Using bacterial bioluminescence as a reporter of toxicity has replaced the classical toxicity monitoring technology of using fish or daphnia with a cutting-edge technology. Fusion of bacterial stress promoters, which control the transcription of stress genes corresponding to heat-shock, DNA-, or oxidative-damaging stress, to the bacterial lux operon has resulted in the development of novel toxicity biosensors with a short measurement time, enhanced sensitivity, and ease and convenient usage. Therefore, these recombinant bioluminescent bacteria are expected to induce bacterial bioluminescence when the cells are exposed to stressful conditions, including toxic chemicals. We have used these recombinant bioluminescent bacteria in order to develop toxicity biosensors in a continuous, portable, or in-situ measurement from for air, water, and soil environments. All the data obtained from these toxicity biosensors for these environments were found to be repeatable and reproducible, and the minimum detection level of toxicity was found to be ppb (part per billion) levels for specific chemicals.

  • PDF

Antagonism of Bacterial Extracellular Metabolites to Freshwater-Fouling Invertebrate Zebra Mussels, Dreissena polymopha

  • Gu, Ji-Dong;Ralph Mitchell
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We investigated the antagonism of indigenous bacteria isolated from stressed mussels and their extracellular metabolites on the adult zebra mussel, Dreissena polymorpha. Selective bacterial isolates including Aeromonas media, A. salmonicida, A. veronii, and Shewanella putrefaciens, showed strong lethality against adult mussels and 100% mortality was observed within 5 days of incubation. Bacterial metabolites, fractionated and concentrated from stationary-phase culture supernatants of these bacterial isolates, displayed varying degrees of antagonistic effects on zebra mussels. Among the three size fractions examined, <5, 5-10, and >10 kDa, the mast lethal fraction seems to be >10 kDa for three of the four isolates tested. Further chemical analyses of these size fractions revealed that the predominant constituents were polysaccharides and proteins. No 2-keto-3-deoxyoctanoic acid (2-KDO), deoxyribonucleic acids (DNA) or uranic acid were detectable. Extraction of supernatants of two antagonistic isolates with polar solvent suggested that polar molecules are present in the active fraction. Our data suggest that extracellular metabolites produced by antagonistic bacteria are also involved in disease development in zebra mussels and elucidation of the mechanisms involved may offer a novel strategy for control of biofouling invertebrates.

  • PDF

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Evaluation of Genotoxicity of Three Antimalarial Drugs Amodiaquine, Mefloquine and Halofantrine in Rat Liver Cells

  • Farombi E. Olatunde
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.97-103
    • /
    • 2005
  • The genotoxic effect of antimalarial drugs amodiaquine (AQ), mefloquine (MQ) and halofantrine (HF) was investigated in.at liver cells using the alkaline comet assay. AQ, MQ and HF at concentrations between $0-1000{\mu}mol/L$ significantly increased DNA strand breaks of rat liver cells dose-dependently. The order of induction of strand breaks was AQ>MQ>HF. The rat liver cells exposed to AQ and HF (200 and 400 ${\mu}mol/L$) and treated with (Fpg) the bacterial DNA repair enzyme that recognizes oxidized purine showed greater DNA damage than those not treated with the enzyme, providing evidence that AQ and HF induced oxidation of purines. Such an effect was not observed when MQ was treated with the enzyme. Treatment of cells with catalase, an enzyme inactivating hydrogen peroxide, decreased significantly the extent of DNA damage induced by AQ, and HF but not the one induced by MQ. Similarly quercetin, an antioxidant flavonoid at $50{\mu}mol/L$ attenuated the extent of the formation of DNA strand breaks by both AQ and HE. Quercetin, however, did not modify the effects of MQ. These results indicate the genotoxicity of AQ, MQ and HF in rat liver cells. In addition, the results suggest that reactive oxygen species may be involved in the formation of DNA lesions induced by AQ and HF and that, free radical scavengers may elicit protective effects against genotoxicity of these antimalarial drugs.

  • PDF

Evaluation of a Streptococcus pneumoniae DNA Vaccine Efficacy (폐렴구균 DNA 백신의 유효성 평가)

  • Lee Jue-Hee;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.484-489
    • /
    • 2005
  • Streptococcus pmeumoniae is the leading cause of pneumonia and bacterial meningitis. The current polysaccharide vaccine has been reported ineffective in elderly adults and children less than 2 years of age. Thus, in recent many researchers have been focused on a different approach, DNA vaccine. In our laboratory we developed a Streptococcus pneumoniae DNA (SPDNA) vaccine. This SPDNA vaccine was formulated by inserting the region encoding part of the capsule in the S. pneumoniae into the LAMP-1. In present work, with use of the SPDNA vaccine we attempted to establish a certain methodology useful for evaluation of effectiveness and immunoresponse of a DNA vaccine. Results showed that the subcutaneous route was the most effective for production of antisera specific for S. pneumoniae in mice. By isotyping analyses, IgM, IgGl, IgG2a, and IgG2b were determined. In addition, INF-$\gamma$ and IL-4 were predominantly detected. Combination of those data resulted in a pattern of IgGl < IgG2a=IgG2b and INF$\gamma\>$ >IL-4, which indicates the inmmunity towards the Thl response predominantly; furthermore, the SPDNA vaccination induced resistance of the CD4+T lymphocyte-depleted mice against disseminated pneumococcal infection. These data appear to be possibly due to activation of CDS8+T cell-activation. Taken together, this methodology can be applied for evaluating efficacy and mode of action of a DNA vaccine as minimum critera.