DOI QR코드

DOI QR Code

Occurrence of Bacterial Stem Rot of Ranunculus asiaticus Caused by Pseudomonas marginalis in Korea

  • Li, Weilan (School of Applied Biosciences, Kyungpook National University) ;
  • Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Seung-Han (Punggi Ginseng Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2018.05.20
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

In December 2016, stem rot symptoms were observed on Persian buttercup (Ranunculus asiaticus) plants in Chilgok, Gyeongbuk, Korea. In the early stage of the disease, several black spots appeared on the stem of infected plants. As the disease progressed, the infected stem cleaved and wilted. The causal agent was isolated from a lesion and incubated on Reasoner's 2A (R2A) agar at $25^{\circ}C$. Total genomic DNA was extracted for phylogenetic analysis. Based on the 16S rRNA gene analysis, the isolated strain was found to belong to the genus Pseudomonas. To identify the isolated bacterial strain at the species level, the nucleotide sequences of the gyrase B (gyrB) and RNA polymerase D (rpoD) genes were obtained and compared with the sequences in the GenBank database. As the result, the causal agent of the stem rot disease was identified as Pseudomonas marginalis. To determine the pathogenicity of the isolated bacterial strain, it was inoculated into the stem of healthy R. asiaticus plant, the inoculated plant showed a lesion with the same characteristics as the naturally infected plant. Based on these results, this is the first report of bacterial stem rot on R. asiaticus caused by P. marginalis in Korea.

Keywords

References

  1. Achbani, E. H., Sadik, S., El Kahkahi, R., Benbouazza, A. and Mazouz, H. 2014. First report on Pseudomonas marginalis bacterium causing soft rot of onion in Morocco. Atlas J. Biol. 3: 218-223. https://doi.org/10.5147/ajb.2014.0136
  2. Ait Tayeb, L., Ageron, E., Grimont, F. and Grimont, P. A. D. 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res. Microbiol. 156: 763-773. https://doi.org/10.1016/j.resmic.2005.02.009
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. et al. 1994. Current protocols in molecular biology. vol. 1. John Wiley, New York, NY, USA.
  4. Azad, H. R., Vilchez, M., Paulus, A. O. and Cooksey, D. A. 1996. A new ranunculus disease caused by Xanthomonas campestris. Plant Dis. 80: 126-130. https://doi.org/10.1094/PD-80-0126
  5. Beruto, M. and Debergh, P. 2004. Micropropagation of Ranunculus asiaticus: a review and perspectives. Plant Cell Tissue Organ Cult. 77: 221-230. https://doi.org/10.1023/B:TICU.0000018416.38569.7b
  6. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
  7. Choi, Y. J., Han, K. S., Park, J. H. and Shin, H. D. 2013. First report of Persian buttercup downy mildew caused by Peronospora sp. in Korea. Plant Dis. 97: 422.
  8. De Vos, D., Bouton, C., Sarniguet, A., De Vos, P., Vauterin, M. and Cornelis, P. 1998. Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. J. Bacteriol. 180: 6551-6556.
  9. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  10. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416. https://doi.org/10.2307/2412116
  11. Fujimori, F., Kanehira, T., Shinohara, M. and Doi, Y. 1996. A potyvirus isolated from Ranunculus asiaticus L. Bull. Coll. Agric. Vet. Med. Nihon Univ. 53: 1-8.
  12. Ghobakhloo, A., Shahriari, D. and Rahimian, H. 2002. Occurrence of bacterial leaf spot and blight of cucurbits in Varamin and evaluation of the resistance of some cultivars and lines of cucumber to the disease. Iran. J. Plant Pathol. 38: 59-60.
  13. Hahm, S. S., Han, K. S., Shim, M. Y., Choi, J. J., Kwon, K. H. and Choi, J. E. 2003. Occurrence of bacterial soft rot of lily bulb caused by Pectobacterium carotovorum subsp. carotovorum and Pseudomonas marginalis in Korea. Plant Pathol. J. 19: 43-45. https://doi.org/10.5423/PPJ.2003.19.1.043
  14. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  15. Han, K. S., Park, M. J., Park, J. H., Cho, S. E. and Shin, H. D. 2015. First report of Sclerotinia stem rot of Ranunculus asiaticus caused by Sclerotinia sclerotiorum in Korea. Plant Dis. 99: 1653.
  16. Jakob, K., Goss, E. M., Araki, H., Van, T., Kreitman, M. and Bergelson, J. 2002. Pseudomonas viridiflava and P. syringae-natural pathogens of Arabidopsis thaliana. Mol. Plant Microbe Interact. 15: 1195-1203. https://doi.org/10.1094/MPMI.2002.15.12.1195
  17. Kanehira, T., Horikoshi, N., Yamakita, Y. and Shinohara, M. 1997. Occurrence of Ranunculus phyllody in Japan and detection of its phytoplasma. Ann. Phytopathol. Soc. Jpn. 63: 26-28. https://doi.org/10.3186/jjphytopath.63.26
  18. Kim, Y. K., Lee, S. D., Choi, C. S., Lee, S. B. and Lee, S. Y. 2002. Soft rot of onion bulbs caused by Pseudomonas marginalis under low temperature storage. Plant Pathol. J. 18: 199-203. https://doi.org/10.5423/PPJ.2002.18.4.199
  19. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  20. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  21. Li, J., Chai, Z., Yang, H., Li, G. and Wang, D. 2007. First report of Pseudomonas marginalis pv. marginalis as a cause of soft rot of potato in China. Australas. Plant Dis. Notes 2: 71-73. https://doi.org/10.1071/DN07029
  22. Margherita, B., Giampiero, C. and Pierre, D. 1996. Field performance of tissue-cultured plants of Ranunculus asiaticus L. Sci. Hortic. 66: 229-239. https://doi.org/10.1016/S0304-4238(96)00916-8
  23. Meynet, J. 1993. Ranunculus. In: The physiology of flower bulbs, ed. by A. A. De Hertogh and M. Le Nard, pp. 603-610. Elsevier, Amsterdam, The Netherlands.
  24. Moore, E. R. B., Tindall, B. J., Martins Dos Santos, V. A. P., Pieper, D. H., Ramos, J. L. and Palleroni, N. J. 2006. Nonmedical: Pseudomonas. In: The Prokaryotes, vol. 6, ed. by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, pp. 646-703. Springer, New York, NY, USA.
  25. Obradovic, A., Mijatovic, M., Ivanovic, M. and Arsenijevi, M. 2002. Population of bacteria infecting cauliflower in Yugoslavia. Acta Hortic. 579: 497-500.
  26. Park, K. S., Kim, Y. T., Kim, H. S., Lee, J. H., Lee, H. I. and Cha, J. S. 2016. Bacterial spot disease of green pumpkin by Pseudomonas syringae pv. syringae. Res. Plant Dis. 22: 158-167. (In Korean) https://doi.org/10.5423/RPD.2016.22.3.158
  27. Peix, A., Ramirez-Bahena, M. H. and Velazquez, E. 2009. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9: 1132-1147. https://doi.org/10.1016/j.meegid.2009.08.001
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  29. Schollenberger, M. 2005. Bacterial leaf spot of philodendron. Phytopathol. Pol. 35: 103-108.
  30. Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. and Jackson, R. W. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35: 652-680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
  31. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, ed. by P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 607-654. American Society for Microbiology, Washington, D. C., USA.
  32. Stanier, R. Y., Palleroni, N. J. and Doudoroff, M. 1996. The aerobic pseudomonads: a taxonmic study. J. Gen. Microbiol. 43: 159-271.
  33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  34. Vassilev, V. I. 1998. Pseudomonas marginalis pv. marginalis and some other bacteria on faba bean. Fabis Newsl. 41: 21-24.
  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  36. Yamamoto, S. and Harayama, S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61: 1104-1109.
  37. Yamamoto, S. and Harayama, S. 1998. Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int. J. Syst. Bacteriol. 48: 813-819. https://doi.org/10.1099/00207713-48-3-813
  38. Yamamoto, S., Bouvet, P. J. M. and Harayama, S. 1999. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int. J. Syst. Bacteriol. 49: 87-95. https://doi.org/10.1099/00207713-49-1-87
  39. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. and Harayama, S. 2000. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385-2394. https://doi.org/10.1099/00221287-146-10-2385
  40. Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755