• Title/Summary/Keyword: Backscattering Coefficient

Search Result 76, Processing Time 0.021 seconds

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios

  • Liu, Houtong;Wang, Zhenzhu;Zhao, Jianxin;Ma, Jianjun
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

Relationship between RADARSAT Backscattering Coefficient and Rice Growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscattering coefficients ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height, leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the beginning of rice growth, backscattering coefficients were ranged from -l6~-l3dB when rice fields were not covered with rice canopy and flooded. At the maximum vegetative stage of rice, backscattering coefficients of the rice field were the highest ranging from -4.4dB~-3.1dB. The temporal variation of backscattering coefficient($\sigma$$^{\circ}$) in rice field was significant in this study. Backscattering coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage than before. This results show RADARSAT data is promising for rice monitoring.

Relation between Radar Backscattering Coefficients and Surface Profile Length for Bare Soil Surfaces Using Theoretical Predictions and Measurement Data (토양 표면에서의 레이더 산란 계수와 표면 거칠기 측정 길이의 관계에 대한 이론 모델과 측정 데이터의 비교)

  • Oh, Yi-Sok;Hong, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1181-1188
    • /
    • 2006
  • The radar backscattering coefficients of soil surfaces with various roughness conditions are computed at first in this paper. The roughness parameters for various surface-profile lengths are also obtained. Then, the relationship between the radar backscattering coefficients and the profile length is studied. It was shown that the effect of the profile length is negligible on the backscattering coefficient, even though the roughness parameters vary a lot with the length of the surface profile.

Comparison between Measurements and Scattering Model for Polarimetric Backscattering from Vegetation Canopies (식물층에서의 편파별 후방 산란 측정과 산란 모델의 비교)

  • Hong Jin-Young;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.804-810
    • /
    • 2006
  • In this paper, we describe a measurement technique for the backscattering coefficient and ground truth of a vegetation canopy in detail. A simple microwave backscattering model for vegetation canopies is verified by being compared with this measurement. An R-band$(1.7\sim2.0GHz)$ scatterometer system is used to measure the backscattering coefficient of a vegetated area in the Han-river park for various incidence angles and a wide range of the soil moisture contents. It is found that the model agrees quite well with the measurements for co-polarized radar backscatter, and needs a correction for cross polarized radar backscatter.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

  • Umutoniwase, Nawally;Lee, Seung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.789-802
    • /
    • 2021
  • Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices (Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.

A Study on Optical Properties of Red Tide Algal Species (적조 원격탐사 기술 개발을 위한 적조생물의 광특성 연구)

  • Lee, Nu-Ri;Moon, Jeong-Eon;Ahn, Yu-Hwan;Yang, Chan-Su;Yoon, Hong-Joo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.187-191
    • /
    • 2006
  • This research is about the optical characteristics of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development 21 kinds of red tide organisms were cultivated to investigate optical characteristics of them in the level of laboratory, and chlorophyll specific absorption coefficient $(a^*)$ and backscattering coefficient $(b_b^*)$ are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 $(m^2/mg)$, and the shapes of spectrums were also different. The range of $b_b^*$ appeared to be $10^{-2}\sim10^{-4}m^2/mg$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as an ocean color model input parameter from ocean color.

  • PDF