• Title/Summary/Keyword: Back-propagation learning

Search Result 528, Processing Time 0.024 seconds

Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves (Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구)

  • 양보석;신광재;최원호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • A neural network with one or more layers of hidden units can be trained using the well-known error back propagation algorithm. According to this algorithm, the synaptic weights of the network are updated during the training by propagating back the error between the expected output and the output provided by the network. However, the error back propagation algorithm is characterized by slow convergence and the time required for training and, in some situation, can be trapped in local minima. A theoretical formulation of a new fast learning method based on tabu search method is presented in this paper. In contrast to the conventional back propagation algorithm which is based solely on the modification of connecting weights of the network by trial and error, the present method involves the calculation of the optimum weights of neural network. The effectiveness and versatility of the present method are verified by the XOR problem. The present method excels in accuracy compared to that of the conventional method of fixed values.

  • PDF

Personalized Wire and Wireless News Retrieval System Using Intelligent Agent (지능형 에이전트를 이용한 개인화된 유.무선 뉴스 검색 시스템)

  • Han, Seon-Mi;Woo, Jin-Woon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.609-616
    • /
    • 2001
  • Today, as the Internet is popularized, information and news retrieval are generalized. However due to the tremendous amount and variety of information, many users appeal the difficulties of information retrieval. Thus in this paper, we propose a news retrieval system, which filters news articles using an intelligent agent with the learning ability of BPN (back propagation neural network). This system also uses a profile to accomodate the personalized news retrieval. This system consists of two major agents, collection agent and learning agent. The collection agent gathers the articles from several news sites, analyzes them, and stores into a database. The learning agent builds the BPN based on the personalized data. In addition, considering the popularity of the wireless internet due to the rapid development of communication technologies, we made this system provide the service through the wireless internet.

  • PDF

Off-line Selection of Learning Rate for Back-Propagation Neural Ntwork using Evolutionary Adaptation (진화 적응성을 이용한 신경망의 학습률 선택)

  • 김흥범;정성훈;김탁곤;박규호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.52-56
    • /
    • 1996
  • In trainir~ga back-propagation neural network, the learning speed of the network is greatly affected by its learning rate. Most of off-line fashioned learning-rate selection methods, however, are empirical except for some deterministic methods. It is very tedious and difficult to find a good learning rate using the empirical methods. The deterministic methods cannot guarantee the quality of the quality of the learning rate. This paper proposes a new learning-rate selection method. Our off-line fashioned method selects a good learning rate through stochastically searching process using evolutionary programming. The simulation results show that the learning speed achieved by our method is superior to that of deterministic and empirical methods.

  • PDF

A study on nonlinear data-based modeling using fuzzy neural networks (퍼지신경망을 이용한 비선형 데이터 모델링에 관한 연구)

  • Kwon, Oh-Gook;Jang, Wook;Joo, Young-Hoon;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-123
    • /
    • 1997
  • This paper presents models of fuzzy inference systems that can be built from a set of input-output training data pairs through hybrid structure-parameter learning. Fuzzy inference systems has the difficulty of parameter learning. Here we develop a coding format to determine a fuzzy neural network(FNN) model by chromosome in a genetic algorithm(GA) and present systematic approach to identify the parameters and structure of FNN. The proposed FNN can automatically identify the fuzzy rules and tune the membership functions by modifying the connection weights of the networks using the GA and the back-propagation learning algorithm. In order to show effectiveness of it we simulate and compare with conventional methods.

  • PDF

Design of automatic cruise control system of mobile robot using fuzzy-neural control technique (퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Back-propagation Algorithm with a zero compensated Sigmoid-prime function (영점 보상 Sigmoid-prime 함수에 의한 역전파 알고리즘)

  • 이왕국;김정엽;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.115-122
    • /
    • 1994
  • The problems in back-propagation(BP) generally are learning speed and misclassification due to lacal minimum. In this paper, to solve these problems, the classical modified methods of BP are reviewed and an extension of the BP to compensate the sigmoide-prime function around the extremity where the actual output of a unit is close to zero or one is proposed. The proposed method is not onlu faster than the conventional methods in learning speed but has an advantage of setting variables easily because it shows good classification results over the vast and uncharted space about the variations of learning rate, etc.. And it is simple for hardware implementation.

  • PDF

The Azimuth and Velocity Control of a Mobile Robot with Two Drive Wheels by Neural-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동형 로보트의 자세 및 속도 제어)

  • Cho, Y.G.;Bae, J.I.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.74-82
    • /
    • 1998
  • This paper presents a new approach to the design of speed and azimuth control of a mobile robot with two drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the neural-fuzzy network and back propagation algorithm to train the neural-fuzzy network controller in the framework of the specialized learning architecture. It is proposed to a learned controller with two neural-fuzzy networks based on an independent reasoning and a connection net with fixed weights to simplify the neural-fuzzy network. The performance of the proposed controller can be seen by the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

A study on fatigue crack growth modelling by back propagation neural networks (역전파 신경회로망을 이용한 피로 균열성장 모델링에 관한 연구)

  • 주원식;조석수
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Up to now, the existing crack growth modelling has used a mathematical approximation but an assumed function have a great influence on this method. Especially, crack growth behavior that shows very strong nonlinearity needed complicated function which has difficulty in setting parameter of it. The main characteristics of neural network modelling to engineering field are simple calculations and absence of assumed function. In this paper, after discussing learning and generalization of neural networks, we performed crack growth modelling on the basis of above learning algorithms. J'-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

  • PDF

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF