Abstract
Today, as the Internet is popularized, information and news retrieval are generalized. However due to the tremendous amount and variety of information, many users appeal the difficulties of information retrieval. Thus in this paper, we propose a news retrieval system, which filters news articles using an intelligent agent with the learning ability of BPN (back propagation neural network). This system also uses a profile to accomodate the personalized news retrieval. This system consists of two major agents, collection agent and learning agent. The collection agent gathers the articles from several news sites, analyzes them, and stores into a database. The learning agent builds the BPN based on the personalized data. In addition, considering the popularity of the wireless internet due to the rapid development of communication technologies, we made this system provide the service through the wireless internet.
오늘날 인터넷이 보편화되면서 정보 검색 및 뉴스 검색들이 일반화되고 있지만 엄청난 정보의 양과 다양성 등으로 인해 사용자들은 오히려 정보 검색의 어려움을 호소하고 있다. 이에 본 논문에서는 사용자 편의의 뉴스 검색과 사용자의 요구와 취향이 반영될 수 있도록 BPN(Back Propagation Neural Network)의 학습 기능을 가진 지능형 에이전트를 이용하여 뉴스 기사를 필터링하는 뉴스 검색 시스템을 제안한다. 이 시스템은 여러 신문사의 기사를 수집 및 통합하여 그 날의 주요 기사들을 데이터베이스에 저장하는 수집 에이전트, 사용자가 입력한 키워드를 이용하여 BPN 기법으로 학습시키는 학습 에이전트 등으로 구성되어 있다. 또한 정보 통신 기술의 눈부신 발달로 무선 인터넷이 급속히 보급되는 현실을 감안하여 무선으로도 이러한 서비스를 제공할 수 있도록 시스템을 구성하였다.