• Title/Summary/Keyword: Back-propagation learning

Search Result 528, Processing Time 0.022 seconds

Implementation of Speed Sensorless Induction Motor drives by Fast Learning Neural Network using RLS Approach

  • Kim, Yoon-Ho;Kook, Yoon-Sang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.293-297
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.

  • PDF

Efficient Iris Recognition using Deep-Learning Convolution Neural Network (딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식)

  • Choi, Gwang-Mi;Jeong, Yu-Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.521-526
    • /
    • 2020
  • This paper presents an improved HOLP neural network that adds 25 average values to a typical HOLP neural network using 25 feature vector values as input values by applying high-order local autocorrelation function, which is excellent for extracting immutable feature values of iris images. Compared with deep learning structures with different types, we compared the recognition rate of iris recognition using Back-Propagation neural network, which shows excellent performance in voice and image field, and synthetic product neural network that integrates feature extractor and classifier.

On the Configuration of initial weight value for the Adaptive back propagation neural network (적응 역 전파 신경회로망의 초기 연철강도 설정에 관한 연구)

  • 홍봉화
    • The Journal of Information Technology
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and configuration of the range for the initial connecting weight according to the different maximum target value from minimum target value. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence. On the simulation tested this algorithm on three learning pattern. The first was 3-parity problem learning, the second was $7{\times}5$ dot alphabetic font learning and the third was handwritten primitive strokes learning. In three examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in the alphabetic font and handwritten primitive strokes learning, the neural network enhanced to loaming efficient about 27%~57.2% for the standard back propagation(SBP).

  • PDF

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

Back-Propagation Algorithm through Omitting Redundant Learning (중복 학습 방지에 의한 역전파 학습 알고리듬)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.68-75
    • /
    • 1992
  • In this paper the back-propagation algorithm through omitting redundant learning has been proposed to improve learning speed. The proposed algorithm has been applied to XOR, Parity check and pattern recognition of hand-written numbers. The decrease of the number of patterns to be learned has been confirmed as learning proceeds even in early learning stage. The learning speed in pattern recognition of hand-written numbers is improved more than 2 times in various cases of hidden neuron numbers. It is observed that the improvement of learning speed becomes better as the number of patterns and the number of hidden numbers increase. The recognition rate of the proposed algorithm is nearly the same as that conventional method.

  • PDF

Active Control of Sound in a Duct System by Back Propagation Algorithm (역전파 알고리즘에 의한 덕트내 소음의 능동제어)

  • Shin, Joon;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2265-2271
    • /
    • 1994
  • With the improvement of standard of living, requirement for comfortable and quiet environment has been increased and, therefore, there has been a many researches for active noise reduction to overcome the limit of passive control method. In this study, active noise control is performed in a duct system using intelligent control technique which needs not decide the coefficients of high order filter and the mathematical modeling of a system. Back propagation algorithm is applied as an intelligent control technique and control system is organized to exclude the error microphone and high speed operational device which are indispensable for conventional active noise control techniques. Furthermore, learning is performed by organizing acoustic feedback model, and the effect of the proposed control technique is verified via computer simulation and experiment of active noise control in a duct system.

The Detection of Esophagitis by Using Back Propagation Network Algorithm

  • Seo, Kwang-Wook;Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1873-1880
    • /
    • 2006
  • The results of this study suggest the use of a Back Propagation Network (BPN) algorithm for the detection of esophageal erosions or abnormalities - which are the important signs of esophagitis - in the analysis of the color and textural aspects of clinical images obtained by endoscopy. The authors have investigated the optimization of the learning condition by the number of neurons in the hidden layer within the structure of the neural network. By optimizing learning parameters, we learned and have validated esophageal erosion images and/or ulcers functioning as the critical diagnostic criteria for esophagitis and associated abnormalities. Validation was established by using twenty clinical images. The success rates for detection of esophagitis during calibration and during validation were 97.91% and 96.83%, respectively.

Implementation of back propagation algorithm for wearable devices using FPGA (FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현)

  • Choi, Hyun-Sik
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • Neural networks can be implemented in variety of ways, and specialized chips is being developed for hardware improvement. In order to apply such neural networks to wearable devices, the compactness and the low power operation are essential. In this point of view, a suitable implementation method is a digital circuit design using field programmable gate array (FPGA). To implement this system, the learning algorithm which takes up a large part in neural networks must be implemented within FPGA for better performance. In this paper, a back propagation algorithm among various learning algorithms is implemented using FPGA, and this neural network is verified by OR gate operation. In addition, it is confirmed that this neural network can be used to analyze various users' bio signal measurement results by learning algorithm.

Learning of multi-layer perceptrons with 8-bit data precision (8비트 데이타 정밀도를 가지는 다층퍼셉트론의 역전파 학습 알고리즘)

  • 오상훈;송윤선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.209-216
    • /
    • 1996
  • In this paper, we propose a learning method of multi-layer perceptrons (MLPs) with 8-bit data precision. The suggested method uses the cross-entropy cost function to remove the slope term of error signal in output layer. To decrease the possibility of overflows, we use 16-bit weighted sum results into the 8-bit data with appropriate range. In the forwared propagation, the range for bit-conversion is determined using the saturation property of sigmoid function. In the backwared propagation, the range for bit-conversion is derived using the probability density function of back-propagated signal. In a simulation study to classify hadwritten digits in the CEDAR database, our method shows similar generalization performance to the error back-propagation learning with 16-bit precision.

  • PDF