• Title/Summary/Keyword: BP decoding

Search Result 35, Processing Time 0.021 seconds

Combined Horizontal-Vertical Serial BP Decoding of GLDPC Codes with Binary Cyclic Codes (이진 순환 부호를 쓰는 GLDPC 부호의 수평-수직 결합 직렬 복호)

  • Chung, Kyuhyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.585-592
    • /
    • 2014
  • It is well known that serial belief propagation (BP) decoding for low-density parity-check (LDPC) codes achieves faster convergence without any increase of decoding complexity per iteration and bit error rate (BER) performance loss than standard parallel BP (PBP) decoding. Serial BP (SBP) decoding, such as horizontal SBP (H-SBP) decoding or vertical SBP (V-SBP) decoding, updates check nodes or variable nodes faster than standard PBP decoding within a single iteration. In this paper, we propose combined horizontal-vertical SBP (CHV-SBP) decoding. By the same reasoning, CHV-SBP decoding updates check nodes or variable nodes faster than SBP decoding within a serialized step in an iteration. CHV-SBP decoding achieves faster convergence than H-SBP or V-SBP decoding. We compare these decoding schemes in details. We also show in simulations that the convergence rate, in iterations, for CHV-SBP decoding is about $\frac{1}{6}$ of that for standard PBP decoding, while the convergence rate for SBP decoding is about $\frac{1}{2}$ of that for standard PBP decoding. In simulations, we use recently proposed generalized LDPC (GLDPC) codes with binary cyclic codes (BCC).

Improved Performance Decoding for LDPC Codes with a Large Number of Short Cycles (다수의 짧은 주기를 가진 LDPC 부호를 위한 향상된 신뢰 전파 복호)

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.173-177
    • /
    • 2008
  • In this paper, we improve performance of Low Density Parity Check (LDPC) codes with adding a large number of short cycles. Short cycles, especially cycles of length 4, degrade performance of LDPC codes if the standard BP (Belief Propagation) decoding is used. Therefore current researches have focused on removing cycles of length 4 for designing good performance LDPC codes. We found that a large number of cycles of length 4 improve performance of LDPC codes if a modified BP decoding is used. We present the modified BP decoding algorithm for LDPC codes with a large number of short cycles. We show that the modified BP decoding performance of LDPC codes with a large number of short cycles is better than the standard BP decoding performance of LDPC codes designed by avoiding short cycles.

Upper Bounds of Maximum Likelihood (ML) Decoding Performance of a few Irregular LDPC Codes (몇 개의 불규칙한 LDPC 부호의 Maximum Likelihood(ML) 복호에 대한 성능의 상향 한계와 정점 성능 감쇠 분석)

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1025-1028
    • /
    • 2009
  • This paper presents upper bounds of Maximum Likelihood (ML) decoding performance of a few irregular LDPC codes using the simple bound and ML input output weight distributions and it is shown that contrary to general opinion that as block length becomes longer, BP decoding performance becomes simply closer to ML decoding performance, before peak degradation, as block length becomes longer, BP decoding performance falls behind ML decoding performance more and after peak degradation, general opinion holds.

Estimating BP Decoding Performance of Moderate-Length Irregular LDPC Codes with Sphere Bounds

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.594-597
    • /
    • 2010
  • This paper estimates belief-propagation (BP) decoding performance of moderate-length irregular low-density parity-check (LDPC) codes with sphere bounds. We note that for moderate-length($10^3{\leq}N{\leq}4\times10^3$) irregular LDPC codes, BP decoding performance, which is much worse than maximum likelihood (ML) decoding performance, is well matched with one of loose upper bounds, i.e., sphere bounds. We introduce the sphere bounding technique for particular codes, not average bounds. The sphere bounding estimation technique is validated by simulation results. It is also shown that sphere bounds and BP decoding performance of irregular LDPC codes are very close at bit-error-rates (BERs) $P_b$ of practical importance($10^{-5}{\leq}P_b{\leq}10^{-4}$).

Nonuniform Encoding and Hybrid Decoding Schemes for Equal Error Protection of Rateless Codes

  • Lim, Hyung Taek;Joo, Eon Kyeong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.719-726
    • /
    • 2012
  • Messages are generally selected with the same probability in the encoding scheme of rateless codes for equal error protection. In addition, a belief propagation (BP) decoding scheme is generally used because of the low computational complexity. However, the probability of recovering a new message by BP decoding is reduced if both the recovered and unrecovered messages are selected uniformly. Thus, more codeword symbols than expected are required for the perfect recovery of message symbols. Therefore, a new encoding scheme with a nonuniform selection of messages is proposed in this paper. In addition, a BP-Gaussian elimination hybrid decoding scheme that complements the drawback of the BP decoding scheme is proposed. The performances of the proposed schemes are analyzed and compared with those of the conventional schemes.

An Improved Belief Propagation Decoding for LT Codes (LT 부호를 위한 개선된 BP 복호)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.223-228
    • /
    • 2014
  • It is known that a belief propagation algorithm is a fast decoding scheme for LT codes but it require a large overhead, especially for a short block length LT codes. In this paper an improved belief decoding algorithm using searching method for degree-1 packets is proposed for a small overhead. The proposed decoding scheme shows the desirable performance in terms of overhead while guaranteeing the same computational complexity with respect to the conventional BP decoding scheme.

A New Iterative LT Decoding Algorithm for Binary and Nonbinary Galois Fields

  • Mao, Yuexin;Huang, Jie;Wang, Bing;Huang, Jianzhong;Zhou, Wei;Zhou, Shengli
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.411-421
    • /
    • 2013
  • Digital fountain codes are record-breaking codes for erasure channels. They have many potential applications in both wired and wireless communications. Most existing digital fountain codes operate over binary fields using an iterative belief-propagation (BP) decoding algorithm. In this paper, we propose a new iterative decoding algorithm for both binary and nonbinary fields. The basic form of our proposed algorithm considers both degree-1 and degree-2 check nodes (instead of only degree-1 check nodes as in the original BP decoding scheme), and has linear complexity. Extensive simulation demonstrates that it outperforms the original BP decoding scheme, especially for a small number of source packets. The enhanced form of the proposed algorithm combines the basic form of the algorithm and a guess-based algorithm to further improve the decoding performance. Simulation results demonstrate that it can provide better decoding performance than the guess-based algorithm with fewer guesses, and can achieve decoding performance close to that of the maximum likelihood decoder at a much lower decoding complexity. Last, we show that our nonbinary scheme has the potential to outperform the binary scheme when choosing suitable degree distributions, and furthermore it is insensitive to the size of the Galois field.

LDPC Codes' Upper Bounds over the Waterfall Signal-to-Noise Ratio (SNR) Region

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.880-882
    • /
    • 2008
  • This paper presents LDPC codes' upper bounds over the waterfall SNR region. The previous researches have focused on the average bound or ensemble bound over the whole SNR region and showed the performance differences for the fixed block size. In this paper, the particular LDPC codes' upper bounds for various block sizes are calculated over the waterfall SNR region and are compared with BP decoding performance. For different block sizes the performance degradation of BP decoding is shown.

Single-Step Adaptive Offset Min-Sum Algorithm for Decoding LDPC Codes (LDPC 코드의 빠른 복원을 위한 1단으로 구성된 적응적인 오프셋 MS 알고리즘)

  • Lin, Xiaoju;Baasantseren, Gansuren;Lee, Hae-Kee;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • Low-density parity-check (LDPC) codes with belief-propagation (BP) algorithm achieve a remarkable performance close to the Shannon limit at reasonable decoding complexity. Conventionally, each iteration in decoding process contains two steps, the horizontal step and the vertical step. In this paper, an efficient implementation of the adaptive offset min-sum (AOMS) algorithm for decoding LDPC codes using the single-step method is proposed. Furthermore, the performances of the AOMS algorithm compared with belief-propagation (BP) algorithm are investigated. The algorithms using the single-step method reduce the implementation complexity, speed up the decoding process and have better efficiency in terms of memory requirements.

An Improvement of UMP-BP Decoding Algorithm Using the Minimum Mean Square Error Linear Estimator

  • Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2004
  • In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.

  • PDF