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Abstract - Low-density parity-check (LDPC) codes with belief-propagation (BP) algorithm achieve a remarkable 

performance close to the Shannon limit at reasonable decoding complexity. Conventionally, each iteration in decoding 

process contains two steps, the horizontal step and the vertical step. In this paper, an efficient implementation of the 

adaptive offset min-sum (AOMS) algorithm for decoding LDPC codes using the single-step method is proposed. 

Furthermore, the performances of the AOMS algorithm compared with belief-propagation (BP) algorithm are 

investigated. The algorithms using the single-step method reduce the implementation complexity, speed up the decoding 

process and have better efficiency in terms of memory requirements.
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1. Introduction

Low-density parity-check (LDPC) codes belong to the 

family of linear block codes with sparse parity-check 

matrix H, that is, a small value of row and column 

weight compared to the code block length. They were 

first discovered by Gallager [1] in 1962 and rediscovered 

by Mackay and Neal [2], [3] in 1996. Moreover, an LDPC 

code can be represented by a parity-check matrix H, 

which is often described as a Tanner graph [4]. The 

degree d of a node on the graph is referred to the d 

edges connected to it. The   bit nodes connected to 
 
the 

  check node in the graph correspond to the   1’s on 

the   row of H. The object of decoding is to search 

for the most likely codeword c which satisfies    . 

Fig. 1 The parity check matrix and its corresponding Tanner 

Graph.

Figure 1 is an example of the parity check matrix H of 

(6, 3) LDPC code and its corresponding Tanner graph.

Furthermore, LDPC codes deliver very good 

performance for long code lengths when decoded with the 

belief-propagation (BP) algorithm [2]. As LDPC codes are 

considered for the use in a wide range of applications, for 

example in the second Satellite Digital Video Broadcasting 

normalization (DVB-S2), the search for efficient 

implementation of decoding algorithms has been pursued 

intensively. The implementation of the BP algorithm in 

log-likelihood is difficult because a lot of logarithmic and 

multiplicative operations are involved in the check-node 

update. Therefore the BP algorithm can be simplified to 

min-sum (MS) or BP- based algorithm [5], which greatly 

reduces the implementation complexity but degrades 

decoding performance. This has led to the development of 

different variants of MS algorithm which are the 

normalized min-sum (NMS) algorithm [6], the offset 

min-sum (OMS) algorithm [7], and the adaptive offset 

min-sum (AOMS) algorithm [8].

Exactly, many works have been devoted to reduce the 

complexity of check node update process. However, the 

update process of the variable node also costs excessive 

storage and computation resources. Therefore, the purpose 

of our work is to find the efficient implementation 

method using the single-step for decoding LDPC codes, 

which increases the decoding speed and reduces the 

requirement on memory usage in our low complexity 

software implementation (in C language).

The remainder of the paper is organized as follows. 

Section II briefly reviews the standard BP algorithm 

while the single-step method is explored in section III. 
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Section IV investigates the MS algorithm and its 

different variants using the single-step method. Some 

simulation results of the performance are shown in 

Section V. Finally, the conclusion of this work is given 

in Section VI.         

2. Standard BP Algorithm

LDPC codes are generally decoded in iterative fashion 

where the soft messages are updated at variable nodes 

and check nodes. These messages are iteratively 

propagated along the Tanner graph. Despite sacrificing 

optimality, iterative BP algorithm offers a good 

performance-complexity tradeoff for decoding LDPC 

codes, especially at large block lengths.

In the following, we assume BPSK modulation which 

maps a codeword          , with   = 0 or 1, 

into a transmitted sequence         , according 

to      . Then x is transmitted over an additive 

white Gaussian noise (AWGN). The received value 

corresponding to   after the demodulator is      

, where     is a random variable with zero mean and 

variance    . We assume all the messages passing 

between variable and check nodes are in the form of the 

log-likelihood ratios (LLR’s). So the initial LLR’s of bit n 

is defined by


  ln  

  
 



Let        be the set of variable nodes 

that participates in check node  , ie, the positions of 

1’s in the row of the parity check matrix H and N(m)\n 

represents the set N(m), with excluded variable node  . 

Similarly,       denotes the set of check 

nodes   in which the variable nodes   participate and 

M(n)\m represents the set M(n), with excluded check 

node  .

For the  iteration, let 
  and 

  denote the 

message sent from variable node to check node and the 

message sent from check node to variable node, 

respectively [2]. Then each iteration of the standard BP 

algorithm in LLR domain is given as follows:

z Initialization: 

   For each n and each ∈ ,

    
  



z Iteration:

1) Horizontal Step (update check node): 

     For each m and each ∈ ,


  tanh  

 ′∈╲
tanh


 ′
 

  (1)

2) Vertical Step (update variable node):

     For each n and each ∈ ,


  

 
 ′∈ ╲


 ′
  (2)

3) The output of variable node:


 

 
∈ 


  (3)  

4) Hard decision: 

  For ∈    ,detect the transmitted codeword such that:


   if 



 

   If  
   or the number of iterations exceeds  

     a given maximum number of iterations, the process  

     stops the iteration and yields the output  
  as the  

     decoded codeword; otherwise the decoding repeats   

     from step 1). 

3. The Single-step Method

Conventionally, each iteration of standard BP decoding 

contains two steps. Each check node receives messages 

from all variable nodes connected to it, called the 

horizontal step. Then it sends messages back to these 

variable nodes, called the vertical step. 

It can be simplified the processing in either variable 

nodes or check nodes, or both, to obtain different 

versions of the BP algorithm. In this paper, we omit the 

update processing of variable nodes, such that the 

variable nodes message can be obtained from the update 

processing of check nodes.

In the standard BP algorithm, compared (2) with (3), it 

is very straightforward to rewrite the vertical step (2) as


  


  (4)

  The efficient message computation is derived by 

substituting (4) into (1), given the following updating 

formula for the incoming and outgoing messages from a 

check node cm. Hence, it merges the horizontal step and 

the vertical step into a single horizontal step. In 

summary, the single-step BP algorithm is simply given 

as follows, as MS algorithm has been presented in [9]: 

z Initialization: For ∈     ,


  
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z Horizontal Step (update check node):


 




  tanh  

 ′∈╲
tanh


 

 ′
 

  (5)


 



z  Hard decision: 

 Estimate the original codeword  
 as


   if 

 

  
for ∈  

Compared with the standard double-step BP algorithm, 

the single-step method is not only faster but also 

improves memory efficiency reducing the implementation 

complexity. It saves memory by storing 
 , which are 

of N items, instead of 
 , which are of ∙  (average 

variable node degree) items. For software implementations, 

the single-step method can be efficiently implemented 

with a significant reduction of the complexity and the 

memory due to the storing need only for the addressing 

from check nodes to variable nodes. Therefore it cuts 

down the amount of memory used for addressing by half. 

4. Simplifications Of BP Algorithm 

Many simplifications of the BP algorithm, that just 

simplified the check nodes update processing, for decoding 

LDPC codes have been investigated. Now the different 

variants of MS algorithm using the single-step method, 

that simplified not only the check nodes updated 

processing but also the variable nodes updated processing, 

are discussed as follow.

4.1  Min-Sum Algorithm

Taking advantage of the odd symmetry property of the 

function tanh(x), MS algorithm simplifies the updating 

rule in check nodes by modifying (5) into two parts:


  

 ′∈╲
 ′ × min ′∈╲  ′  (6)

where           
 

 ,

  




The MS algorithm makes some computation reduction 

on the check node update and the initialization of the 

input LLR 
   . The knowledge of the noise power 

  is unnecessary in MS algorithm.

4.2 Normalized/Offset Min-Sum Algorithm

It is clear that the MS algorithm reduces the 

complexity of check node update, which is made at the 

expense of a substantial loss in performance. Therefore, 

there are two basic methods which make MS algorithm 

more efficient. They are the normalized min-sum (NMS) 

algorithm and the offset min-sum (OMS) algorithm.


  ∙

  (7)

and


 max      (8)

where α is a normalized factor smaller than 1 while β 

is a offset factor. The values are to be found 

theoretically by density evolution (DE) [6]. These two 

algorithms are both useful techniques which make good 

tradeoffs between performance and decoding complexity, 

especially for the short and medium length regular LDPC 

codes. And they successfully outperform the MS 

algorithm with only increase a little complexity. 

4.3 Adaptive Offset Min-Sum Algorithm

To achieve the optimal performance, α and β should 

vary with different SNR and different iterations. In [7], 

an adaptive offset min-sum (AOMS) algorithm is 

presented, which lets the offset factor adaptively change 

for the better performance. The adaptive offset factor is 

defined as

 

 


∙⌈∙min ′∈╲  ′⌉  (9)

   Although the section of ranges   from 0 to infinite, 

the actual offset factors are able to be reduced to 8 parts. 

 


∙    ∈      ∈  ∞   (10)

where the fix normalized factor α  is set to be 0.8 by 

the DE [6] and  ⌈∙min′∈╲  ′⌉ .
This means that there are 8 different adaptive offset 

Fig. 2 The adaptive offset function of  .
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factors range from 0.1 to 0.8. The adaptive offset factor 

function of min  is showed as Figure 2. It looks like a 
step function where different input has a different output 

 . The advantage of this method is that it combines 

normalized and offset schemes together. And it only 

increases a little computation load and needs a memory 

place for one look-up table of length 8.

5. Simulation Results

In Figure 3, we present the bit error rate (BER) 

performance of AOMS algorithm comparing with the BP, 

MS, NMS and OMS algorithms for an (N, K) = (2016, 

1008) irregular LDPC code, with maximum 20 iterations. 

In this case, we set  α = 0.7 and β = 0.2 based on 

density evolution results. From Figure 3, we show that 

the MS algorithm has about 0.4 dB performance gap 

compared to the BP algorithm at the bit error rate of 

10e-4. Most of the gap between BP and MS algorithm 

can be bridged by both the NMS and OMS algorithms. 

However we can observe that the AOMS algorithm gets 

closer to the BP algorithm, only about 0.05 dB away at 

the bit error rate of 10e-4. As the SNR increases, the BP 

and AOMS algorithms indeed get the very remarkable 

performance, even reaches the bit error rate of 10e-7.

Fig. 3 Performance of the (2016, 1008) LDPC code with 

BP, MS, NMS, OMS and AOMS algorithm for 20 

decoding iterations.

Figure 4 shows the BER performance of the BP, MS, 

OMS and AOMS algorithms for (4032, 2016) LDPC code 

with 80 iterations. The AOMS algorithm also gets closer 

to the BP and achieves a 0.05dB coding gain over the 

OMS algorithm. Moreover, it performs even slightly 

better than BP decoding at the high SNRs region since 

the BP decoding is not optimum for LDPC codes of finite 

length.

At last, we show some simulation results for LDPC 

codes with different decoding iterations. Figure 5 depicts 

the BER performance of 10 and 100 maximum decoding 

iterations for (1008, 504) LDPC code, with the BP, MS, 

OMS and AOMS algorithms. The solid line and dashed 

line denote the 10 and 100 maximum decoding iterations, 

respectively. It shows that 100 decoding iteration gets 

better BER than the small 10 decoding iteration at the 

same SNRs.Importantly, these results suggest that little 

additional improvements could be achieve the good 

performance close to the BP algorithm, and they are 

faster decoding using single-step method in our software 

implementation with low complexity.

  

Fig. 4 Performance of the (4032, 2016) LDPC code with 

BP, MS, NMS, OMS and AOMS algorithm for 80 

decoding iterations.

Fig. 5 Performance of the (1008, 504) LDPC code with 

BP, MS, OMS and AOMS algorithm for 10 (solid) 

and 100 (dashed) decoding iterations. 

6. Conclusions

Efficient implementations of the BP, MS, NMS, OMS 

and AOMS algorithms using the single-step method for 

decoding LDPC codes have been investigated. The 

software implementations have shown that the AOMS 

algorithm using single-step method results faster 
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decoding speed of the standard double-step algorithms 

and better efficiency in terms of memory requirements 

with a significant reduction in implementation complexity. 

And they have also shown that it is possible to attain 

the performance of the BP extremely closely with 

significant reduced-complexity variants of the MS, NMS, 

OMS, AOMS algorithms, especially the AOMS algorithm 

performs more close to the BP algorithm.

 감사의 글

이 논문은 2008년도 충북대학교 학술연구지원사업

의 연구비 지원에 의하여 연구되었음(This work was 

supported by the research grant of the Chungbuk 

National University in 2008)

References

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” 

PhD thesis, MIT, Jully 1963.

[2] D. J. C. Mackay, “Good Error-Correcting Codes based 

on Very Sparce Matrices,” IEEE Transactions on 

Information Theory, vol. 45, pp. 399-431, March 

1999.

[3] D. J. C. MacKay and R. M. Neal, “Near 

shannonlimitperformanceoflow-densityparity-checkcod

es,”Electron.Lett.,vol.32,no.18,pp. 1645–1646, Aug. 1996.

[4] R. M. Tanner, “A recursive approach to low complexity 

codes,” IEEE Trans. Inform. Theory, vol. IT-27, no. 

5, pp. 399–431, Sept. 1981.

[5] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, 

“Reduced complexity iterative decoding of low 

density parity check codes based on belief 

propagation,” IEEE Trans. Commun., vol. 47, no. 5, 

pp. 673–680, May 1999.

[6] J. Chen and M. P. C. Fossorier, “Near-optimum 

universal belief propagation based decoding of 

low-density parity check codes,” IEEE Trans.  

Commun., vol. 50, no. 3, pp.  406–414, Mar. 2002.

[7] J. Chen and M. P. C. Fossorier, “Density evolution 

for two improved BP-based decoding algorithms of 

LDPC codes,” IEEE Commun. Letters , vol. 6, pp. 

208-210, May 2002.

[8] M. Jiang, C. Zhao, L. Zhang, and E. Xu, “Adaptive 

Offset Min-Sum Algorithm for Low-Density Parity 

Check Codes,” IEEE Commun. Letters, vol. 10, no. 6, 

June  2006.

[9] X. Huang, “Single-Scan Min-Sum Algorithms for Fast 

Decoding of LDPC Codes,” IEEE Information Theory 

Workshop, Chengdu,China,Sep2006.

저   자   소   개

林 小 菊 (Xiaoju Lin)

2008년 7월 Shenzhen University of 

China, 전자공학과 (공학사). 2008년 9

월～현재 충북대학교 전기공학과 석사

과정

<관심분야> LDPC Communication 

system

康 秀 藺 (Gansuren Baasantseren)

2008년 2월 Mongolian Science and 

Technology University, 전기공학과 

(공학사). 2008년 9월～현재 충북대학

교 전기공학과 석사과정

<관심분야> Ulltra-wideband Communication 

system

이 해 기 (李 海 基)

1981년 충북대학교 공업교육 (공학사). 

1985년 성균관대학교 전기공학 (공학석사). 

1990년 성균관대학교  전기공학 (공학박사). 

1991년～현재 충청대학 전지전자학부 교수

<관심분야> 신호처리, 전력제어, 씨퀀스제어

김 성 수 (金 聖 洙)

1997년 Univ. of Central Florida(공학박

사). 1999년 ～ 2001년 우석대학교 전기공

학과 조교수. 2001년 9월 ～ 현재 충북대학

교 전자정보대학 전기공학부 교수

<관심분야> 디지털통신, 인공지능, 신호처리


