Journal of the Korean Society for information Management
/
v.17
no.4
/
pp.7-26
/
2000
This study is an attempt to analyze the individual merit of the INSTRAT model, which forms a cognitive process paradigm, and that of the Big6 model, which involves a functional approach, as tools for enhancing human information activities and aptitude. The former was examined through logical interpretations, while the latter was deduced from interviews using the Micro-Moment Time-Line method, a key methodology used in the Sense-Making Approaches. Results indicate that the application of the INSTRAT model is suitable for developing information systems that can assist users in the stage of defining information needs and search strategies, and that the application of the Big6 model is appropriate in information literacy education or information aptitude training. Of particular significance is the fact that the study proves for the first time that human information problem-solving behavior indeed follows the process delineated in the Big6 model.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.1
/
pp.157-175
/
2022
At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.
With the growing interest in the 4th industrial revolution and big data, various policies are being developed for facilitating the use of public open big data, which are leading to a wide range of added values created from use of such data. Despite the expanded requirements for public data disclosure and the legal system improvement, however, the use of public open big data is still limited. According to the literature review, there are studies on policy proposals for the government guiding directions for public open big data, but there is a lack of studies that handle the issue from the users' viewpoint. Therefore, this study aims to analyze the public open data ecosystem in Korea and to analyze public open big data through interviews with the providers (the government and public institutions) and users (private sector companies and citizens). This way, the study finds inhibition factors and facilitation factors, draws out issues and suggests solutions through a causal relationship analysis between each factor. Being a research on finding measures for facilitating both public big data release and use, this study has theoretical implications. In the meanwhile, the derived issues and alternatives provide practical implications also for stakeholders who are planning to facilitate release and use of public open big data.
In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.
This study conducted both big data and netnography analysis to analyze consumer needs and behaviors of online consumer community. Big data analysis is easy to identify correlations, but causality is difficult to identify. To overcome this limitation, we used netnography analysis together. The netnography methodology is excellent for context grasping. However, there is a limit in that it is time and costly to analyze a large amount of data accumulated for a long time. Therefore, in this study, we searched for patterns of overall data through big data analysis and discovered outliers that require netnography analysis, and then performed netnography analysis only before and after outliers. As a result of analysis, the cause of the phenomenon shown through big data analysis could be explained through netnography analysis. In addition, it was able to identify the internal structural changes of the community, which are not easily revealed by big data analysis. Therefore, this study was able to effectively explain much of online consumer behavior that was difficult to understand as well as contextual semantics from the unstructured data missed by big data. The big data-netnography integrated model proposed in this study can be used as a good tool to discover new consumer needs in the online environment.
This study proposed SNS big data analysis method of food service industry in the 4th industrial revolution. This study analyzed the keyword of the fourth industrial revolution by using Google trend. Based on the data posted on the SNS from January 1, 2016 to September 5, 2017 (1 year and 8 months) utilizing the "Social Metrics". Through the social insights, the related words related to cooking were analyzed and visualized about attributes, products, hobbies and leisure. As a result of the analysis, keywords were found such as cooking, entrepreneurship, franchise, restaurant, job search, Twitter, family, friends, menu, reaction, video, etc. As a theoretical implication of this study, we proposed how to utilize big data produced from various online materials for research on restaurant business, interpret atypical data as meaningful data and suggest the basic direction of field application. In order to utilize positioning of customers of restaurant companies in the future, this study suggests more detailed and in-depth consumer sentiment as a basic resource for marketing data development through various menu development and customers' perception change. In addition, this study provides marketing implications for the foodservice industry and how to use big data for the cooking industry in preparation for the fourth industrial revolution.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.4
/
pp.739-746
/
2020
The fourth industrial revolution introduced at world economic forum in 2016 has had huge effects on tourism industries as well as the change of core technologies in ICT such as big data, IoT, etc, This paper proposes the methods to propel tourism of Yoesu city through big data analysis and questionnaires. Sensitive words and positive-negative trend are extracted by Social Metrics and the keywords for Yeosu tour trends are extracted and analyzed by Naver datalab, and the results are visualized by R language. And frequency, difference, factor, covariance and regression analysis in SPSS are executed for the questionnaires for 493 visitors who traveled in Yeosu city. Sentiment analysis for Yeosu tour and maritime cable car shows that positive effect is much more than negative one. The analyses for questionnaires in SPSS show that Yeosu area is statistically significant to tour satisfaction index and tour revitalization for Yeosu, and favorite sightseeing places and searching electronic devices for age groups are different. The sightseeing places such as a maritime park with soft contents that give joyfulness and healing to tourists are highly attracted in both the big data and questionnaires analysis.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.755-768
/
2017
As Big Data becomes the core of the fourth industrial revolution, big data-based processing and analysis capabilities are expected to influence the company's future competitiveness. Comparative studies of RHadoop and RHIPE that integrate R and Hadoop environment, have not been discussed by many researchers although RHadoop and RHIPE have been discussed separately. In this paper, we constructed big data platforms such as RHadoop and RHIPE applicable to large scale data and implemented the machine learning algorithms such as multiple regression and logistic regression based on MapReduce framework. We conducted a study on performance and scalability with those implementations for various sample sizes of actual data and simulated data. The experiments demonstrated that our RHadoop and RHIPE can scale well and efficiently process large data sets on commodity hardware. We showed RHIPE is faster than RHadoop in almost all the data generally.
Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
Journal of Korean Medical Science
/
v.33
no.53
/
pp.343.1-343.8
/
2018
Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.
The purpose of this study is to exploratory examine the structural relationships among meaningfulness of work, personality(Big 5 character-types) and job stress. To conduct such examination, the author (i) designated meaningfulness of work, personality(Big 5 character-types) and job stress as variables and (ii) designed a research model by conducting preceding studies on the variables. To examine the research model the author collected the survey data from the residents in Kyoungsangbuk-do, 332 copies of questionnaire. Collected data were analyzed using SPSS and AMOS programs. The analysis results are as follows. Especially, (1) the meaningfulness of work had a positive effect on agreeableness, conscientiousness, and extraversion. (2) the meaningfulness of work had a negative effect on neuroticism. (3) the meaningfulness of work had no effect on openness to experience. (4) the neuroticism factor had a positive effect on psychological job stress and physical job stress. (5) the openness to experience had a negative effect on psychological job stress and physical job stress. (6) the meaningfulness of work had no effect on psychological job stress and physical job stress. The implications and limitation which this study are as follows. First, this study has discovered that there was statistically significant relationship between the meaningfulness of work and Big 5 character-types. Second, Big 5 character-types(neuroticism, openness to experience) had statistically effect on psychological job stress and physical job stress. This study have limitation in that was conducted based on cross-sectional design of research. Because, the mechanism of job stress is a dynamic process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.