References
- ASA data expo. (2009). http://stat-computing.org/dataexpo/2009/the-data.html
- Davenport, T. (2015). B. I. G. forum 2015, Gyeonggi Creative Economy & Innovation Center.
- Forte, R. M. (2015). Mastering predictive analytics with R, Packt Publishing Ltd, Birmingham, U.K.
- Guha, S. (2010). Computing environment for the statistical analysis of large and complex data, Ph.D Thesis, Department of Statistics, Purdue University, West Lafayette.
- Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B., Cleveland, W. S. (2012). Large complex data: divide and recombine (D&R) with RHIPE. Statistics, 191, 53-67.
- Hafen, R., Gibson, T., Dam, K. K., Critchlow., T. (2014). Power grid data analysis with R and Hadoop in data mining applications with R, 1-34.
- Harish, D., Anusha, M.S., Dr. Daya Sagar, K.V. (2015). Big data analysis using Rhadoop. IJIRAE, 4, 180-185.
- Hilbe, J. M. (2009). Logistic regression models, Chapman & Hall/CRC Press.
- IDC. (2015). IDC FutureScape: Worldwide big data and analytics 2016 predictions, MA, USA.
- Jee, Y. S. (2017). Exercise rehabilitation in the fourth industrial revolution. Journal of Exercise Rehabilitation, 13, 255-256. https://doi.org/10.12965/jer.1735012.506
- Jung, B. H., Shin, J. E. and Lim, D. H. (2014). Rhipe platform for big data processing and analysis. The Korean Journal of Applied Statistics, 27, 1171-1185. https://doi.org/10.5351/KJAS.2014.27.7.1171
- Jung, B. H. and Lim, D. H. (2016). Learning algorithms for big data logistic regression on RHIPE platform. The Korean Journal of Applied Statistics, 27, 911-923.
- Ko, Y. and Kim, J. (2013). Analysis of big data using Rhipe. Journal of the Korean Data & Information Science, 24, 975-987. https://doi.org/10.7465/jkdi.2013.24.5.975
- Liang, S. (2003). Quantitative remote sensing of land surfaces, John Wiley & Sons.
- Lin, H., Yang, S., Midkiff, S. P. (2013). RABID - A general distributed R processing framework targeting large data-set problems. IEEE International Congress on Big Data, Santa Clara, CA, USA.
- Oancea, B. and Dragoescu, R. M. (2014). Integration R and Hadoop for big data analysis. Romanian statistical review, 2, 83-94.
- Park, J. H., Lee, S. Y., Kang, D. H., Won, J. H. (2013). Hadoop and Mapreduce. Journal of the Korean Data & Information Science, 24, 1013-1027. https://doi.org/10.7465/jkdi.2013.24.5.1013
- Prakash, L. and Bejda, M. (2015). Performance analysis for scaling up R computations using Hadoop, B.S. in Computer Science, The University of Texas at Austin.
- Prajapati, V. (2013). Big data analytics with R and Hadoop, Packt Publishing Ltd, Birmingham, UK.
- Rashid, M. (2008). Inference on logistic regression, Ph. D. Thesis, Bowling Green State University.
- Sammer, E. (2012). Hadoop operations, O'Reilly Media, Inc., Sebastopol, CA.
- Shin, J. E., Jung, B. H. and Lim, D. H. (2015). Big data distributed processing system using RHadoop. Journal of the Korean Data & Information Science, 26, 1155-1166. https://doi.org/10.7465/jkdi.2015.26.5.1155
- Shin, J. E., Oh, Y. S. and Lim, D. H. (2016). RHadoop platform for K-Means clustering of big data. Journal of the Korean Data & Information Science, 27, 609-619. https://doi.org/10.7465/jkdi.2016.27.3.609
- Wang, C., Chen, M. H., Schifano, Wu, J. and Yan, J. (2015). A survey of statistical methods and computing for Big Data, Cornell University Library.
- White, T. (2012). Hadoop: The definitive guide, O'Reilly Media, Inc., Sebastopol, CA.
- Rotte, A. V., Patwari, G., Hiremath, S. (2015). Big data analytics made easy with rhadoop. International Journal of Research in Engineering and Technology, 4, 9-15.