• 제목/요약/키워드: BARRIER METAL

검색결과 416건 처리시간 0.034초

Soda lime glass기판위의 barrier층$(SiO_2,\;Al_2O_3)$이 ITO박막특성에 미치는 영향 (Effect of ITO thin films characterization by barrier layers$(SiO_2\;and\;Al_2O_3)$ on soda lime glass substrate)

  • 이정민;최병현;지미정;안용태;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.292-292
    • /
    • 2007
  • To apply PDP panel, Soda lime glass(SLG) is cheeper than Non-alkali glass and PD-200 glass but has problems such as low strain temperature and ion diffusion by alkali metal oxide. In this paper suggest the methode that prohibits ion diffusion by deposing barrier layer on SLG. Indium thin oxide(ITO) thin films and barrier layers were prepared on SLG substrate by Rf-magnetron sputtering. These films show a high electrical resistivity and rough uniformity as compared with PD-200 glass due to the alkali ion from the SLG on diffuse to the ITO film by the heat treatment. However these properties can be improved by introducing a barrier layer of $SiO_2\;or\;Al_2O_3$ between ITO film and SLG substrate. The characteristics of films were examined by the 4-point probe, SEM, UV-VIS spectrometer, and X-ray diffraction. GDS analysis confirmed that barrier layer inhibited Na and Ka ion diffusion from SLG. Especially ITO films deposited on the $Al_2O_3$ barrier layer had higher properties than those deposited on the $SiO_2$ barrier layer.

  • PDF

Charge Transport at the Interfaces between Carbon Nanotube and Wetting Metal Leads Mediated via Topological Defects

  • Ko, Kwan Ho;Kim, Han Seul;Kim, Hu Sung;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.179.2-179.2
    • /
    • 2014
  • Carbon nanotubes (CNT)-metal contacts play an important role in nanoelectronics applications such as field-effect transistor (FET) devices. Using Al and (10,0) CNT, we have recently showed that the CNT-metal contacts mediated via topological defects within CNT exhibits intrinsically low contact resistance, thanks to the preservation of the sp2 bonding network at the metal-CNT contacts.[1] It is well-established that metals with good wetting property such as Pd consistently yield good contacts to both metallic and semiconducting CNTs. In this work, the electronic and charge transport properties of the interfaces between capped CNT and Pd will be investigated based on first-principles computations and compared with previous results obtained for the Al electrodes.

  • PDF

Metal Oxide/Metal Bi-layer for Low-Cost Source/Drain Contact of Pentacene OTFT

  • Moon, Han-Ul;Yoo, Seung-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.571-574
    • /
    • 2009
  • Metal oxide/metal bilayer structures are explored as contacts with a low injection barrier in organic thin-film transistors (OTFTs) in an effort to realize their true potential for low-cost electronics. OTFTs with a bilayer electrode of $WO_3$ (10nm) and Al shows a saturation mobility as large as 0.97 $cm^2$/Vsec which are comparable to those of Au-based control samples (~0.90 $cm^2$/Vsec). Scaling of contact resistance with respect to the thickness of $WO_3$ layer is also discussed.

  • PDF

A Study on Bi-metal 3D printing Technology Development based on Laser Technology

  • Kim, Chiyen
    • 한국산업융합학회 논문집
    • /
    • 제23권2_1호
    • /
    • pp.107-113
    • /
    • 2020
  • Additive manufacturing(AM) can create complex shapes directly in 3D CAD models with internal geometry compared to conventional subtraction manufacturing. AM technology has the advantage of adopting various materials as well as the reduction of material. However, the high cost of AM is still a significant barrier preventing the wider adoption of AM in industries. This paper analyzes the technical application cases for solving these entry barriers and proposes a bi-metal 3D printing technology as an anticipated application to overcome the difficulty. The paper investigates the complications for current 3D metal printing technology to conduct bi-metal 3D printing and addresses ongoing solution research based on laser technology.

건설공사장 가설방음벽의 음향 특성 (Acoustic Properties of Temporary Noise Barriers on Construction Site)

  • 정진연;임정빈;이성찬
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.191-198
    • /
    • 2010
  • The noise by the construction activities is one of the main issues in Korea. To prevent the noise from construction site, construction company installs temporary noise barriers along the construction site boundary. Normally sound insulation performance ($R_w$) of the temporary noise barriers made by metal or plastic is between 18 and 31 dB and metallic noise barriers are around 5 dB higher than plastic noise barriers. Sound absorption performance (NRC) of the temporary noise barriers are between 0.20 and 0.59 so it's difficult to characterize their acoustic performance. In this study, it has founded that sound insulation performance of the temporary noise barrier has been improved about 3dB by stick the high density acoustic sheet and insertion loss of noise barrier is getting increased as the source and receiver approached the temporary noise barriers.

PVD법으로 증착한 W-B-C-N 박막의 질소량에 따른 구조변화 연구 (Structure Behavior of Sputtered W-B-C-N Thin Film for various nitrogen gas ratios)

  • 송문규;이창우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.109-110
    • /
    • 2005
  • We have suggested sputtered W-C-N thin film for preventing thermal budget between semiconductor and metal. These results show that the W-C-N thin film has good thermal stability and low resistivity. In this study we newly suggested sputtered W-B-C-N thin diffusion barrier. In order to improve the characteristics, we examined the impurity behaviors as a function of nitrogen gas flow ratio. This thin film is able to prevent the interdiffusion during high temperature (700 to $1000^{\circ}C$) annealing process and has low resistivity ($\sim$200$\mu{\Omega}-cm$). Through the analysis of X-Ray diffraction, resistivity and XPS, we studied structure behavior of W-B-C-N diffusion barrier.

  • PDF

Effects of Hydrophilic Surface Treatment on SUS Substrates by Using Dielectric Barrier Discharge

  • Joa, Sang-Beom;Kang, In-Je;Yang, Jong-Keun;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.458-458
    • /
    • 2012
  • Fuel Cell is used stacking metal or polymer substrate. This hydro property of substrate surface is very important. Usually, surface property is hydrophilic. The surface oxidation of SUS is investigated through plasma treatments with an atmospheric-pressure dielectric barrier discharge (DBD) for increasing hydrophilic property. The plasma process makes an experiment under various operating conditions of the DBD, which operating conditions are treatment time, plasma gas mixture ratio, the plasma source supply frequency. Two kinds of SUS substrate, SUS-304 and SUS 316L, were used. Discharge frequency has a crucial impact on equipment performance and gas treatment. After the plasma treatment of a SUS plate, highly improved wettability was noted. But, when high oxygen supply, the substrate damaged seriously.

  • PDF

고내압용 Au/Ni/Ti/3C-SiC 쇼트키 다이오드의 제작과 그 특성 (Fabrication of a Au/Ni/Ti/3C-SiC Schottky Diode and its Characteristics for High-voltages)

  • 심재철;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.261-265
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a Au/Ni/Ti/3C-SiC Schottky diode with field plate (FP) edge termination. The Schottky contacts were annealed for 30 min at temperatures ranging from 0 to $800^{\circ}C$. At annealing temperature of $600^{\circ}C$, it showed an inhomogeneous Schottky barrier and had the best electrical characteristics. However, the annealing of $800^{\circ}C$ replaced it with ohmic behaviors because of the formation of many different types of nickel silicides. The fabricated Schottky diode had a breakdown voltage of 200 V, Schottky barrier height of 1.19 eV and worked normally even at $200^{\circ}C$.

Adaptive method for the purification of zinc and arsenic ions contaminated groundwater using in-situ permeable reactive barrier mixture

  • Njaramba, Lewis Kamande;Nzioka, Antony Mutua;Kim, Young-Ju
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.283-288
    • /
    • 2020
  • This study investigated the purification process of groundwater contaminated with zinc and arsenic using a permeable reactive barrier with a zero-valent iron/pumice mixture. We determined the removal rates of the contaminants for 30 days. In this study, column reactor filled with the zero-valent iron/pumice reactive mixture was used. Experimental results showed that the mixture exhibited an almost complete removal of the zinc and arsenic ions. Arsenic was removed via co-precipitation and adsorption processes while zinc ions were asorbed in active sites.The purification process of water from the metal ionscontinued for 30 days with constant hydraulic conductivity because of the enhanced porosity of the pumice and interparticle distance between the zero-valent iron and pumice. Contaminants removal rates and the remediation mechanism for each reactive system are described in this paper.

Alkali & Alkaline-Earth Metal Sources for OLED Devices

  • Tominetti, S.;Cattaneo, L.;Longoni, G.;Bonucci, A.;Toia, L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1763-1768
    • /
    • 2006
  • Low work function alkali metals and alkaline earths successfully lower the electron injection barrier and increase electron injection into the organic layer in OLED displays, but their implementation is not easy. AlkaMax technology can ensure the required metal evaporation rate in a fast, homogeneous and easily controllable way.

  • PDF