• Title/Summary/Keyword: B2X

Search Result 4,009, Processing Time 0.025 seconds

BERRY-ESSEEN BOUNDS OF RECURSIVE KERNEL ESTIMATOR OF DENSITY UNDER STRONG MIXING ASSUMPTIONS

  • Liu, Yu-Xiao;Niu, Si-Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.343-358
    • /
    • 2017
  • Let {$X_i$} be a sequence of stationary ${\alpha}-mixing$ random variables with probability density function f(x). The recursive kernel estimators of f(x) are defined by $$\hat{f}_n(x)={\frac{1}{n\sqrt{b_n}}{\sum_{j=1}^{n}}b_j{^{-\frac{1}{2}}K(\frac{x-X_j}{b_j})\;and\;{\tilde{f}}_n(x)={\frac{1}{n}}{\sum_{j=1}^{n}}{\frac{1}{b_j}}K(\frac{x-X_j}{b_j})$$, where 0 < $b_n{\rightarrow}0$ is bandwith and K is some kernel function. Under appropriate conditions, we establish the Berry-Esseen bounds for these estimators of f(x), which show the convergence rates of asymptotic normality of the estimators.

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

The Convolution Sum $\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(1, 14),(2, 7),(1, 7)

  • Alaca, Ayse;Alaca, Saban;Ntienjem, Ebenezer
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.377-389
    • /
    • 2019
  • We evaluate the convolution sum $W_{a,b}(n):=\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(2, 7) for all positive integers n. We use a modular form approach. We also re-evaluate the known sums $W_{1,14}(n)$ and $W_{1,7}(n)$ with our method. We then use these evaluations to determine the number of representations of n by the octonary quadratic form $x^2_1+x^2_2+x^2_3+x^2_4+7(x^2_5+x^2_6+x^2_7+x^2_8)$. Finally we express the modular forms ${\Delta}_{4,7}(z)$, ${\Delta}_{4,14,1}(z)$ and ${\Delta}_{4,14,2}(z)$ (given in [10, 14]) as linear combinations of eta quotients.

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

A Study OH Mossbauer Spectra Of the $Li_{0.5}Fe_{2.5-x}Al_xO_4$ Ferrite System (Li_{0.5}Fe_{2.5-x}Al_xO_4 페라이트계의 Mossbauer 스펙트럼 연구)

  • 백승도
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.58-62
    • /
    • 2001
  • The L $i_{0.5}$F $e_{2.5-x}$A $l_{x}$ $O_4$ systems (x=0, 0.3, 0.6, 0.9, 1.2, 1.5) were investigated by X-ray diffraction and Mossbauer spectroscopy. The structure of all the samples is cubic spinel type and lattice constant decrease with increasing Al content x. The Moissbauer spectra reveal two sextet for 0$\leq$x$\leq$0.6, two sextet and a doublet for 0.9$\leq$x$\leq$1.2, and a doublet for x=1.5. The cation distribution of the samples is (L $i_{1-a}$$^{+}$F $e_{a}$ $^{3+}$)$^{A}$[L $i_{a-0.5}$$^{+}$A $l_{2.5-a-x}$$^{+}$F $e_{2.5-a-x}$$^{3+}$]$^{B}$ $O_4$$^{2-}$ and substituted $Al^{3+}$ ions decrease the covalency of F $e^{3+}$- $O^{2-}$ bond in B-sites and A-B super-exchange interactions.tions.s.tions.ons.s.

  • PDF

RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT

  • Dubickas, Arturas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.645-651
    • /
    • 2010
  • In this note we study positive solutions of the mth order rational difference equation $x_n=(a_0+\sum{{m\atop{i=1}}a_ix_{n-i}/(b_0+\sum{{m\atop{i=1}}b_ix_{n-i}$, where n = m,m+1,m+2, $\ldots$ and $x_0,\ldots,x_{m-1}$ > 0. We describe a sufficient condition on nonnegative real numbers $a_0,a_1,\ldots,a_m,b_0,b_1,\ldots,b_m$ under which every solution $x_n$ of the above equation tends to the limit $(A-b_0+\sqrt{(A-b_0)^2+4_{a_0}B}$/2B as $n{\rightarrow}{\infty}$, where $A=\sum{{m\atop{i=1}}\;a_i$ and $B=\sum{{m\atop{i=1}}\;b_i$.