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RATIONAL DIFFERENCE EQUATIONS WITH
POSITIVE EQUILIBRIUM POINT

ARTURAS DUBICKAS

ABSTRACT. In this note we study positive solutions of the mth order ra-
tional difference equation xn = (ag + Y 72y aiZn—i)/(bo + > jeq biTn_s),
where n =m,m+1,m+2,...and zo,...,Tm—1 > 0. We describe a suffi-
cient condition on nonnegative real numbers aog, a1,...,am,bo,b1,...,bm
under which every solution z, of the above equation tends to the limit
(A—bo++/(A—bg)?2+4a9B)/2B as n — oo, where A = >_" | a; and
B =3 bi

1. Introduction

Consider a sequence of positive numbers xg, 1,22, ... defined by the differ-
ence equation

(1)

m
Jo— ap + Zi:l AiTp—g

n = m
bo + Zizl bizy,—_;

form = m,m + 1,m + 2,..., where m is a positive integer, ag,ai,...,Gmnm,
bo,b1,...,b;m = 0 and xg,...,Tm_1 > 0. Suppose a;b; > 0 for at least one
ie{l,...,m}. Set

2 M = min iy

( ) 1<i<m, a;b;#0 b;

We shall prove the following;:

Theorem. Suppose that ag, a1, ..., 0m,bo,01,...,b, = 0, where a;b; > 0 for
at least onei € {1,...,m}, and no index j € {1,...,m} exists for which a; =0
but b; # 0. Let xg,z1,%2,... be a sequence of positive numbers defined by (1).
If ag/M + A— MB < by < A, where A =" a;, B=3",b; and M s
defined by (2), then

lim z, = (A — by + /(A —by)? + 4aoB) /2B

n—oo

for any choice of initial values xg, ..., Tpm_1.
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Several partial cases of the equation (1) have been studied on many occa-
sions. One can find numerous references in the monographs [3] and [2] devoted
to the cases m = 2 and m = 3 of (1), respectively. Generally speaking, the
positive solution x,, of (1) or, more precisely, the sequence (z,)52, can be
bounded or unbounded, periodic or not periodic, stable or not stable, etc. In
particular, the authors of [3] distinguished 49 special cases of the equation (1)
with m = 2. Later, 225 different types of (1) with m = 3 have been examined
in [2].

One should say that the equation (1) often arises not only in pure and ap-
plied mathematics but also in various mathematical models of biological sys-
tems. Sometimes this is an additional motivation for its study. One of the
most natural questions is to determine whether the sequence ()5, which
is a positive solution of (1), has a single finite limit point or not. The dif-
ference equation (1) is called globally stable if, for any choice of initial values
Zoy ...y Tm—1 > 0, the solution z,, of (1) tends to a finite limit Z, which is called
the equilibrium point. In this terminology, our theorem gives a sufficient con-
dition on ag, a1, ..., am,bo, b1, ..., by, under which the equation (1) is globally
stable.

Some sufficient conditions on the coefficients a;, b; under which (1) is globally
stable have been considered in [1] and [4]. More precisely, Camouzis [1] studied
the case m = 3, ag = as = b3 = 0, a1, as, bo, by, by > 0. Park [4] investigated the
case m = 3, ag = as = by =0, az = b3 = 1, a1, bg,b; > 0. In the last section,
we will show that the main theorem of [4] also follows from our theorem (In
fact, the same conclusion follows under even weaker assumptions).

We remark that, by our theorem, every solution z,, tends to a positive
equilibrium point if either by < A or ag > 0. Indeed, since 0 < by < A4, ag > 0,
A, B > 0, we have (A — b+ /(A — by)2 + 4agB)/2B = 0 if and only if by = A
and ag = 0.

2. Proof of Theorem

Put
(3) IT={i:1<i<m, a; =Mb}
and
(4) J=A{1,...,m}\ZT.
Note that
(5) a; > Mb; foreach i=1,...,m,

SO

m

(6) Zai:A>MB:M§:bi.
=1

i=1
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Let (2,,)22, be a sequence of positive numbers satisfying (1). We claim that
if

(7) b0>a0/M+A*MB,
where M > 0 is given in (2), then
(8) Tn <M

for every sufficiently large n.

For the sake of contradiction, assume that z,, > M for infinitely many
positive integers n. Take one of those n’s satisfying n > ng, where ng is an
integer to be chosen later. Then, by (1), we have

ap + Z:il A;Tp—j
bo + 300t bitn—;
Multiplying by the denominator by + > . b;z,,—; and using (3), we find that

M<x, =

(9) Mby — ag < Z(ai — Mbi)l'n,i = Z (ai — sz)xn,z
i=1 1<i<m, i¢T
This cannot happen if Z = {1,...,m}, because then the right hand side of (9)
is zero, whereas (6) and (7) imply that Mby — ag > 0.
So assume that the set J given in (4) is not empty. Estimating each x,_;,
where ¢ € J, by the maximum of those x,_;, say, £,—;;, = maX;es Tn_i, from
(9) we deduce that

(10) Mby — ag < Tn—iy Z(az — Mbl)
i€J
From (3) and (4) it follows that ;. ;(a; — Mb;) = A— MB > 0. Therefore,
the quotient ¢ = by/(A — M B) is greater than 1, by (7). Dividing (10) by
A — M B, we find that
Tpn—i; > (Mbo 70,0)/(A7 MB) = qut

with t = ag/(A—MB) > 0. On applying the same argument to z,_;, > Mq—t
(instead of x,, > M as above), we derive that there is an index i3 € J such
that ©,—;, —i, > (Mq—t)g—t and so on. The process stops after, say, k steps,
when we have

Ty iy > M@ =t ) =t/ 1)+ (M —t/(q—1))¢"
> (M —t/(qg—1))¢"

and 0 < n —i; — -+ — i < m — 1. Putting g = max(zo,...,2m—1) we thus
obtain
(11) (M —t/(qg—1))¢" < p.

Note that M —¢/(¢ — 1) > 0, because, by the definition of ¢ and ¢, this is
equivalent to the inequality (7).
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On the other hand,
np<n<ig+--Fig+m—-1<mk+m—1<m(k+1),
because each index i, 1 <1 < m, is at most m. Hence k > ng/m — 1. Select ng
so large that (M —t/(q — 1))g"/™~! > pu. Then, by (11), & must be smaller
than ng/m — 1, which is a contradiction with k > ng/m — 1. This proves (8).

Next, we will prove that if either by < A or ag > 0, then there is a positive
number u such that

(12) Ty Z U

for each n > 0. Suppose first that by < A. Set 7 = min(zo,...,Tm—1) and
0=1—"by/A > 0. We will prove that then

(13) Xy > u = min(, oM)

for each n > 0.
To prove (13) assume that n is the least index for which z,, < u=min(r, oM).
Clearly, n > m. Then, by (1) and (5), we obtain
ag + Z aiTp—i = Tnbo + T Z biTp—;

i=1 i=1

< ubg + oM Z biTp—i
i=1

m
< ubg + QZ ATy
i=1
Hence

uby > ag+(1—0) Z a;Tn—; = (1—0) Z a;Tp—; = (1—p0) Z a;u = (1—p)Au,
i=1 i=1 i=1
because ag > 0 and z,—; > u. This yields by > (1 — p)A = by, a contradiction.
The proof of (13) is completed.

We now turn to the case ag > 0. This time, select v = min(7, M, ag/(bo+1)).
Then ag > ubg and a; > ub; for each i =1,...,m, by (5). Assume that z,, < u
for some n > 0. Then n > m. So (1) implies that

m m m m
ao + Z AiTn—i = Tpbo + Ty Z bip—i < ubo + Z ub;xp—i < ubo + Z AiTn—i,
i=1 i=1 i=1 =1
giving ag < ubg, a contradiction. This completes the proof of (12).

Combining (8) and (12), we deduce that x,, € [u, M] for each n > ng. Here,
u > 0if by < A or ag > 0. Alternatively, if by = A and ag = 0, we can trivially
take u = 0, because all x,, are positive. Put

S = limsup z,, I = liminf z,,.
n—oo n—0o0

Then 0 < u < I <S5 < M, where w =0 if and only if by = A and ag = 0.
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Let
21 = (A—bo—\/(A — b0)2 + 4&03)/23, 29 = (A—b0+\/(A — bo)2 +4a¢B)/2B

be the solutions of the equation
(14) Bz? — (A —bo)z —ap = B(z — 21)(z — 22) = 0.

We shall prove that S < 2z and I > z5. This yields S = I = z,, and so the
proof of the theorem will be completed.

By the above, the sequence of vectors (., Tyn—1,...,Tn_m), n = Ng+m,ng+
m-+1,. .., belongs the (m+1)-dimensional cube [u, M]™*!. So, by compactness,
there is a sequence of positive integers ng, k = 1,2,3, ..., such that the vector
(Tngs Tmg—1y - -+ s Tny—m) tends to the vector (S, 51,...,S5,) as k — oo, where
Sty Sm < S and u < S1,...,5,,5 < M. From (1) it follows that S(by +
S biS;) =ao + >t a;S;. Hence

(15) Sbo—ao+(Sb1 —a1)51—|—-~-—|—(Sbm —am)Sm = 0.

By (5) and S < M, we obtain Sb; — a; < 0 for each i = 1,...,m. Hence
(Sb; — a;)S; = (Sb; — a;)S for i = 1,...,m. Therefore, on replacing each S; by
S in (15) we will not increase the sum on the left hand side of (15). Hence

BS? — (A—b)S — ag = Sby — ag + Y _(Sb; — a;)S < 0.

=1

So S € [21, z2], by (14), giving S < z2.

We now consider two cases, u = 0 and u > 0. In the first case, u = 0, we
have zo = 0, because by = A and ag = 0. In this case also I = 0, because I > 0.
So S = I =0, which completes the proof of the theorem.

In the second case, u > 0, we have z; < 0 < 29 and S < 2. It re-
mains to prove that I > z3. The argument is similar to that given above.
By compactness, there is a sequence of positive integers fx, k = 1,2,3,...,

such that the vector (xg,, ¢, 1, .., Te,—m) tends to the vector (I, 1Iy,..., Ly,)
as k — oo, where I1,...,I,, > I > u > 0. Now, from (1) it follows that
I(bo + 2111 bil;) = ag + Z?il a;I;. Hence

(16) Ibo*(loﬁ*([bl7(11)]1+"'+(Ibmfam)fm:0.

By (5) and I < S < M, we have Ib; — a; < 0 for each ¢ = 1,...,m. Hence
(Ib; — a;)I; < (Ib; — a;)I for i =1,...,m. This time, on replacing in (16) each
I; by I we will not decrease the sum on the left hand side of (16), so that

B(I —z)(I — 2z) = BI* = (A= bo)I —ag = Ibg —ag + » _(Ib; — a;)I > 0.
i=1
Since I > 0, we must have I > 2o for otherwise (I — z1)(I — 2z2) < 0. This
proves our assertion I = S = z,.
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3. Examples

As the first example we shall consider the case m = 3, ag = az = by = 0,
a3 = by = 1, aj,bg, by > 0. It was proved in [4] that then lim, ..z, =T =
(a1 + 1 —bg)/(by + 1) provided that 0 < a; < by and 1 < by < a1 + 1. We
shall prove that the same holds under weaker conditions 0 < a; < by and
1—a1/b1 <by<ay+1.

Indeed, with the notation of our theorem, we have

A=a1+as+a3=a;+1,
B=0b; +by+bs=0b+1,
29 = (A —by+ /(A —by)? + 4a9B) /2B
=(A—by)/B=T= (a1 +1—"0g)/(b1 +1).
By (2), M = min(a;/b1,1) = a1/b1, because a; < b;. The condition of the
theorem saying that no index j € {1,...,m} exists for which a; = 0 but

bj # 0 is satisfied, because ay = by = 0 and a1b;,a3zbz > 0. Since ap = 0 and
A— MB =1-ay/by, the condition

aO/M+A—MB<b0<A

of the theorem is equivalent to 1 — aq/b1 < by < a1 + 1. Evidently, the equi-
librium point zo0 = T = (a1 + 1 — bo)/(b1 + 1) is positive if by < a; + 1. We
conclude that if 0 < a3 < by and 1 — a;1/by < by < a1 + 1, then the third order
rational difference equation

. 1Tp—1 T Tp-3
- )
bo + b01Tp—1+ Tn—3

Tn

n = 3,4,..., where xg,x1,x2 > 0, has a positive solution x,, which converges
to the positive equilibrium point (a; + 1 —bg)/(b1 + 1) as n — 0.

More generally, suppose that ag =0 and aq, ..., am,b1,...,by, > 0. Assume
that a; > b; for each j € {1,2,...,m} with at least one case of equality. Then
M = 1. Our theorem implies that if ag/M + A— MB = A— B < by < A, then
the difference equation

m

_ Zi:l A;Lp—4

- m )
bo + D imy biTn—i

n=m,m+1,m+2,..., where xq,...,xm,m_1 > 0, has a positive solution x,,
which tends to the positive equilibrium point (A — by)/B as n — 0.

Is the sufficient condition ag/M 4+ A — M B < by < A of the theorem sharp
for its conclusion lim,, o 2, = (A — by + /(A —bo)2 + 4agB)/2B? Clearly,
inequality by < A is sharp. Indeed, by cannot be greater than A for ag = 0,
because the limit (A — by)/B cannot be negative. A simple example z, =
Tp-1/(@n_1+1+¢€), wheree >0, A= B =1, by = 1 + ¢, shows that for its
every positive solution x,, we have lim,,_,o, z,, = 0 (and not (4 —1bgy)/B = —¢).

Ln
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To test the lower bound by > ag/M + A — M B, let us consider the second
order difference equation
o ETp—1 + Tp—2

bo + xn—1

with some fixed positive e. Then ag =0, A =1+¢, B =1, M = . Hence
ag/M + A — MB = 1. By the theorem, every positive solution x,, of this
equation tends to 1 4+ & — bg provided that 1 < by < 1 + . We remark that,
in this particular case, the same conclusion follows under weaker assumption
1—e < by < 14¢ (see Equation #83 on p. 245 in [2]). However, if by < 1—¢, then
the positive solution (x,)22, of (17) can be even unbounded for some choice
of initial values zg,2; > 0. According to [2] (see p. 246), the determination
of those initial values xg,z7 > 0, for which the solution (z,)52, of (17) is
unbounded, is still an open problem.

(17) T
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