RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT

Artūras Dubickas

Abstract

In this note we study positive solutions of the m th order rational difference equation $x_{n}=\left(a_{0}+\sum_{i=1}^{m} a_{i} x_{n-i}\right) /\left(b_{0}+\sum_{i=1}^{m} b_{i} x_{n-i}\right)$, where $n=m, m+1, m+2, \ldots$ and $x_{0}, \ldots, x_{m-1}>0$. We describe a sufficient condition on nonnegative real numbers $a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{m}$ under which every solution x_{n} of the above equation tends to the limit $\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B$ as $n \rightarrow \infty$, where $A=\sum_{i=1}^{m} a_{i}$ and $B=\sum_{i=1}^{m} b_{i}$.

1. Introduction

Consider a sequence of positive numbers $x_{0}, x_{1}, x_{2}, \ldots$ defined by the difference equation

$$
\begin{equation*}
x_{n}=\frac{a_{0}+\sum_{i=1}^{m} a_{i} x_{n-i}}{b_{0}+\sum_{i=1}^{m} b_{i} x_{n-i}} \tag{1}
\end{equation*}
$$

for $n=m, m+1, m+2, \ldots$, where m is a positive integer, $a_{0}, a_{1}, \ldots, a_{m}$, $b_{0}, b_{1}, \ldots, b_{m} \geqslant 0$ and $x_{0}, \ldots, x_{m-1}>0$. Suppose $a_{i} b_{i}>0$ for at least one $i \in\{1, \ldots, m\}$. Set

$$
\begin{equation*}
M=\min _{1 \leqslant i \leqslant m, a_{i} b_{i} \neq 0} \frac{a_{i}}{b_{i}} . \tag{2}
\end{equation*}
$$

We shall prove the following:
Theorem. Suppose that $a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{m} \geqslant 0$, where $a_{i} b_{i}>0$ for at least one $i \in\{1, \ldots, m\}$, and no index $j \in\{1, \ldots, m\}$ exists for which $a_{j}=0$ but $b_{j} \neq 0$. Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence of positive numbers defined by (1). If $a_{0} / M+A-M B<b_{0} \leqslant A$, where $A=\sum_{i=1}^{m} a_{i}, B=\sum_{i=1}^{m} b_{i}$ and M is defined by (2), then

$$
\lim _{n \rightarrow \infty} x_{n}=\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B
$$

for any choice of initial values x_{0}, \ldots, x_{m-1}.
Received January 12, 2009.
2000 Mathematics Subject Classification. 39A11, 40 A05.
Key words and phrases. difference equations, equilibrium point, convergence of sequences, upper and lower limits.

Several partial cases of the equation (1) have been studied on many occasions. One can find numerous references in the monographs [3] and [2] devoted to the cases $m=2$ and $m=3$ of (1), respectively. Generally speaking, the positive solution x_{n} of (1) or, more precisely, the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ can be bounded or unbounded, periodic or not periodic, stable or not stable, etc. In particular, the authors of [3] distinguished 49 special cases of the equation (1) with $m=2$. Later, 225 different types of (1) with $m=3$ have been examined in [2].

One should say that the equation (1) often arises not only in pure and applied mathematics but also in various mathematical models of biological systems. Sometimes this is an additional motivation for its study. One of the most natural questions is to determine whether the sequence $\left(x_{n}\right)_{n=1}^{\infty}$, which is a positive solution of (1), has a single finite limit point or not. The difference equation (1) is called globally stable if, for any choice of initial values $x_{0}, \ldots, x_{m-1}>0$, the solution x_{n} of (1) tends to a finite limit \bar{x}, which is called the equilibrium point. In this terminology, our theorem gives a sufficient condition on $a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{m}$ under which the equation (1) is globally stable.

Some sufficient conditions on the coefficients a_{i}, b_{i} under which (1) is globally stable have been considered in [1] and [4]. More precisely, Camouzis [1] studied the case $m=3, a_{0}=a_{2}=b_{3}=0, a_{1}, a_{3}, b_{0}, b_{1}, b_{2} \geqslant 0$. Park [4] investigated the case $m=3, a_{0}=a_{2}=b_{2}=0, a_{3}=b_{3}=1, a_{1}, b_{0}, b_{1} \geqslant 0$. In the last section, we will show that the main theorem of [4] also follows from our theorem (In fact, the same conclusion follows under even weaker assumptions).

We remark that, by our theorem, every solution x_{n} tends to a positive equilibrium point if either $b_{0}<A$ or $a_{0}>0$. Indeed, since $0 \leqslant b_{0} \leqslant A, a_{0} \geqslant 0$, $A, B>0$, we have $\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B=0$ if and only if $b_{0}=A$ and $a_{0}=0$.

2. Proof of Theorem

Put

$$
\begin{equation*}
\mathcal{I}=\left\{i: 1 \leqslant i \leqslant m, a_{i}=M b_{i}\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{J}=\{1, \ldots, m\} \backslash \mathcal{I} . \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
a_{i} \geqslant M b_{i} \quad \text { for each } \quad i=1, \ldots, m, \tag{5}
\end{equation*}
$$

so

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}=A \geqslant M B=M \sum_{i=1}^{m} b_{i} \tag{6}
\end{equation*}
$$

RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT 647
Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of positive numbers satisfying (1). We claim that if

$$
\begin{equation*}
b_{0}>a_{0} / M+A-M B \tag{7}
\end{equation*}
$$

where $M>0$ is given in (2), then

$$
\begin{equation*}
x_{n} \leqslant M \tag{8}
\end{equation*}
$$

for every sufficiently large n.
For the sake of contradiction, assume that $x_{n}>M$ for infinitely many positive integers n. Take one of those n 's satisfying $n \geqslant n_{0}$, where n_{0} is an integer to be chosen later. Then, by (1), we have

$$
M<x_{n}=\frac{a_{0}+\sum_{i=1}^{m} a_{i} x_{n-i}}{b_{0}+\sum_{i=1}^{m} b_{i} x_{n-i}}
$$

Multiplying by the denominator $b_{0}+\sum_{i=1}^{m} b_{i} x_{n-i}$ and using (3), we find that

$$
\begin{equation*}
M b_{0}-a_{0}<\sum_{i=1}^{m}\left(a_{i}-M b_{i}\right) x_{n-i}=\sum_{1 \leqslant i \leqslant m, i \notin \mathcal{I}}\left(a_{i}-M b_{i}\right) x_{n-i} \tag{9}
\end{equation*}
$$

This cannot happen if $\mathcal{I}=\{1, \ldots, m\}$, because then the right hand side of (9) is zero, whereas (6) and (7) imply that $M b_{0}-a_{0}>0$.

So assume that the set \mathcal{J} given in (4) is not empty. Estimating each x_{n-i}, where $i \in \mathcal{J}$, by the maximum of those x_{n-i}, say, $x_{n-i_{1}}=\max _{i \in \mathcal{J}} x_{n-i}$, from (9) we deduce that

$$
\begin{equation*}
M b_{0}-a_{0}<x_{n-i_{1}} \sum_{i \in \mathcal{J}}\left(a_{i}-M b_{i}\right) \tag{10}
\end{equation*}
$$

From (3) and (4) it follows that $\sum_{i \in \mathcal{J}}\left(a_{i}-M b_{i}\right)=A-M B>0$. Therefore, the quotient $q=b_{0} /(A-M B)$ is greater than 1 , by (7). Dividing (10) by $A-M B$, we find that

$$
x_{n-i_{1}}>\left(M b_{0}-a_{0}\right) /(A-M B)=M q-t
$$

with $t=a_{0} /(A-M B) \geqslant 0$. On applying the same argument to $x_{n-i_{1}}>M q-t$ (instead of $x_{n}>M$ as above), we derive that there is an index $i_{2} \in \mathcal{J}$ such that $x_{n-i_{1}-i_{2}}>(M q-t) q-t$ and so on. The process stops after, say, k steps, when we have

$$
\begin{aligned}
x_{n-i_{1}-\cdots-i_{k}} & >M q^{k}-t\left(q^{k-1}+\cdots+1\right)=t /(q-1)+(M-t /(q-1)) q^{k} \\
& \geqslant(M-t /(q-1)) q^{k}
\end{aligned}
$$

and $0 \leqslant n-i_{1}-\cdots-i_{k} \leqslant m-1$. Putting $\mu=\max \left(x_{0}, \ldots, x_{m-1}\right)$ we thus obtain

$$
\begin{equation*}
(M-t /(q-1)) q^{k}<\mu \tag{11}
\end{equation*}
$$

Note that $M-t /(q-1)>0$, because, by the definition of q and t, this is equivalent to the inequality (7).

On the other hand,

$$
n_{0} \leqslant n \leqslant i_{1}+\cdots+i_{k}+m-1 \leqslant m k+m-1<m(k+1),
$$

because each index $i_{l}, 1 \leqslant l \leqslant m$, is at most m. Hence $k>n_{0} / m-1$. Select n_{0} so large that $(M-t /(q-1)) q^{n_{0} / m-1}>\mu$. Then, by (11), k must be smaller than $n_{0} / m-1$, which is a contradiction with $k>n_{0} / m-1$. This proves (8).

Next, we will prove that if either $b_{0}<A$ or $a_{0}>0$, then there is a positive number u such that

$$
\begin{equation*}
x_{n} \geqslant u \tag{12}
\end{equation*}
$$

for each $n \geqslant 0$. Suppose first that $b_{0}<A$. Set $\tau=\min \left(x_{0}, \ldots, x_{m-1}\right)$ and $\varrho=1-b_{0} / A>0$. We will prove that then

$$
\begin{equation*}
x_{n} \geqslant u=\min (\tau, \varrho M) \tag{13}
\end{equation*}
$$

for each $n \geqslant 0$.
To prove (13) assume that n is the least index for which $x_{n}<u=\min (\tau, \varrho M)$. Clearly, $n \geqslant m$. Then, by (1) and (5), we obtain

$$
\begin{aligned}
a_{0}+\sum_{i=1}^{m} a_{i} x_{n-i} & =x_{n} b_{0}+x_{n} \sum_{i=1}^{m} b_{i} x_{n-i} \\
& <u b_{0}+\varrho M \sum_{i=1}^{m} b_{i} x_{n-i} \\
& \leqslant u b_{0}+\varrho \sum_{i=1}^{m} a_{i} x_{n-i} .
\end{aligned}
$$

Hence
$u b_{0}>a_{0}+(1-\varrho) \sum_{i=1}^{m} a_{i} x_{n-i} \geqslant(1-\varrho) \sum_{i=1}^{m} a_{i} x_{n-i} \geqslant(1-\varrho) \sum_{i=1}^{m} a_{i} u=(1-\varrho) A u$,
because $a_{0} \geqslant 0$ and $x_{n-i} \geqslant u$. This yields $b_{0}>(1-\varrho) A=b_{0}$, a contradiction. The proof of (13) is completed.

We now turn to the case $a_{0}>0$. This time, select $u=\min \left(\tau, M, a_{0} /\left(b_{0}+1\right)\right)$. Then $a_{0}>u b_{0}$ and $a_{i} \geqslant u b_{i}$ for each $i=1, \ldots, m$, by (5). Assume that $x_{n}<u$ for some $n \geqslant 0$. Then $n \geqslant m$. So (1) implies that
$a_{0}+\sum_{i=1}^{m} a_{i} x_{n-i}=x_{n} b_{0}+x_{n} \sum_{i=1}^{m} b_{i} x_{n-i}<u b_{0}+\sum_{i=1}^{m} u b_{i} x_{n-i} \leqslant u b_{0}+\sum_{i=1}^{m} a_{i} x_{n-i}$, giving $a_{0}<u b_{0}$, a contradiction. This completes the proof of (12).

Combining (8) and (12), we deduce that $x_{n} \in[u, M]$ for each $n \geqslant n_{0}$. Here, $u>0$ if $b_{0}<A$ or $a_{0}>0$. Alternatively, if $b_{0}=A$ and $a_{0}=0$, we can trivially take $u=0$, because all x_{n} are positive. Put

$$
S=\limsup _{n \rightarrow \infty} x_{n}, \quad I=\liminf _{n \rightarrow \infty} x_{n} .
$$

Then $0 \leqslant u \leqslant I \leqslant S \leqslant M$, where $u=0$ if and only if $b_{0}=A$ and $a_{0}=0$.

Let
$z_{1}=\left(A-b_{0}-\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B, z_{2}=\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B$
be the solutions of the equation

$$
\begin{equation*}
B z^{2}-\left(A-b_{0}\right) z-a_{0}=B\left(z-z_{1}\right)\left(z-z_{2}\right)=0 \tag{14}
\end{equation*}
$$

We shall prove that $S \leqslant z_{2}$ and $I \geqslant z_{2}$. This yields $S=I=z_{2}$, and so the proof of the theorem will be completed.

By the above, the sequence of vectors $\left(x_{n}, x_{n-1}, \ldots, x_{n-m}\right), n=n_{0}+m, n_{0}+$ $m+1, \ldots$, belongs the $(m+1)$-dimensional cube $[u, M]^{m+1}$. So, by compactness, there is a sequence of positive integers $n_{k}, k=1,2,3, \ldots$, such that the vector $\left(x_{n_{k}}, x_{n_{k}-1}, \ldots, x_{n_{k}-m}\right)$ tends to the vector $\left(S, S_{1}, \ldots, S_{m}\right)$ as $k \rightarrow \infty$, where $S_{1}, \ldots, S_{m} \leqslant S$ and $u \leqslant S_{1}, \ldots, S_{m}, S \leqslant M$. From (1) it follows that $S\left(b_{0}+\right.$ $\left.\sum_{i=1}^{m} b_{i} S_{i}\right)=a_{0}+\sum_{i=1}^{m} a_{i} S_{i}$. Hence

$$
\begin{equation*}
S b_{0}-a_{0}+\left(S b_{1}-a_{1}\right) S_{1}+\cdots+\left(S b_{m}-a_{m}\right) S_{m}=0 \tag{15}
\end{equation*}
$$

By (5) and $S \leqslant M$, we obtain $S b_{i}-a_{i} \leqslant 0$ for each $i=1, \ldots, m$. Hence $\left(S b_{i}-a_{i}\right) S_{i} \geqslant\left(S b_{i}-a_{i}\right) S$ for $i=1, \ldots, m$. Therefore, on replacing each S_{i} by S in (15) we will not increase the sum on the left hand side of (15). Hence

$$
B S^{2}-\left(A-b_{0}\right) S-a_{0}=S b_{0}-a_{0}+\sum_{i=1}^{m}\left(S b_{i}-a_{i}\right) S \leqslant 0
$$

So $S \in\left[z_{1}, z_{2}\right]$, by (14), giving $S \leqslant z_{2}$.
We now consider two cases, $u=0$ and $u>0$. In the first case, $u=0$, we have $z_{2}=0$, because $b_{0}=A$ and $a_{0}=0$. In this case also $I=0$, because $I \geqslant 0$. So $S=I=0$, which completes the proof of the theorem.

In the second case, $u>0$, we have $z_{1} \leqslant 0<z_{2}$ and $S \leqslant z_{2}$. It remains to prove that $I \geqslant z_{2}$. The argument is similar to that given above. By compactness, there is a sequence of positive integers $\ell_{k}, k=1,2,3, \ldots$, such that the vector $\left(x_{\ell_{k}}, x_{\ell_{k}-1}, \ldots, x_{\ell_{k}-m}\right)$ tends to the vector $\left(I, I_{1}, \ldots, I_{m}\right)$ as $k \rightarrow \infty$, where $I_{1}, \ldots, I_{m} \geqslant I \geqslant u>0$. Now, from (1) it follows that $I\left(b_{0}+\sum_{i=1}^{m} b_{i} I_{i}\right)=a_{0}+\sum_{i=1}^{m} a_{i} I_{i}$. Hence

$$
\begin{equation*}
I b_{0}-a_{0}+\left(I b_{1}-a_{1}\right) I_{1}+\cdots+\left(I b_{m}-a_{m}\right) I_{m}=0 \tag{16}
\end{equation*}
$$

By (5) and $I \leqslant S \leqslant M$, we have $I b_{i}-a_{i} \leqslant 0$ for each $i=1, \ldots, m$. Hence $\left(I b_{i}-a_{i}\right) I_{i} \leqslant\left(I b_{i}-a_{i}\right) I$ for $i=1, \ldots, m$. This time, on replacing in (16) each I_{i} by I we will not decrease the sum on the left hand side of (16), so that

$$
B\left(I-z_{1}\right)\left(I-z_{2}\right)=B I^{2}-\left(A-b_{0}\right) I-a_{0}=I b_{0}-a_{0}+\sum_{i=1}^{m}\left(I b_{i}-a_{i}\right) I \geqslant 0
$$

Since $I>0$, we must have $I \geqslant z_{2}$ for otherwise $\left(I-z_{1}\right)\left(I-z_{2}\right)<0$. This proves our assertion $I=S=z_{2}$.

3. Examples

As the first example we shall consider the case $m=3, a_{0}=a_{2}=b_{2}=0$, $a_{3}=b_{3}=1, a_{1}, b_{0}, b_{1}>0$. It was proved in [4] that then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}=$ $\left(a_{1}+1-b_{0}\right) /\left(b_{1}+1\right)$ provided that $0<a_{1} \leqslant b_{1}$ and $1<b_{0}<a_{1}+1$. We shall prove that the same holds under weaker conditions $0<a_{1} \leqslant b_{1}$ and $1-a_{1} / b_{1}<b_{0}<a_{1}+1$.

Indeed, with the notation of our theorem, we have

$$
\begin{aligned}
A & =a_{1}+a_{2}+a_{3}=a_{1}+1 \\
B & =b_{1}+b_{2}+b_{3}=b_{1}+1, \\
z_{2} & =\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B \\
& =\left(A-b_{0}\right) / B=\bar{x}=\left(a_{1}+1-b_{0}\right) /\left(b_{1}+1\right) .
\end{aligned}
$$

By (2), $M=\min \left(a_{1} / b_{1}, 1\right)=a_{1} / b_{1}$, because $a_{1} \leqslant b_{1}$. The condition of the theorem saying that no index $j \in\{1, \ldots, m\}$ exists for which $a_{j}=0$ but $b_{j} \neq 0$ is satisfied, because $a_{2}=b_{2}=0$ and $a_{1} b_{1}, a_{3} b_{3}>0$. Since $a_{0}=0$ and $A-M B=1-a_{1} / b_{1}$, the condition

$$
a_{0} / M+A-M B<b_{0} \leqslant A
$$

of the theorem is equivalent to $1-a_{1} / b_{1}<b_{0} \leqslant a_{1}+1$. Evidently, the equilibrium point $z_{2}=\bar{x}=\left(a_{1}+1-b_{0}\right) /\left(b_{1}+1\right)$ is positive if $b_{0}<a_{1}+1$. We conclude that if $0<a_{1} \leqslant b_{1}$ and $1-a_{1} / b_{1}<b_{0}<a_{1}+1$, then the third order rational difference equation

$$
x_{n}=\frac{a_{1} x_{n-1}+x_{n-3}}{b_{0}+b_{1} x_{n-1}+x_{n-3}},
$$

$n=3,4, \ldots$, where $x_{0}, x_{1}, x_{2}>0$, has a positive solution x_{n} which converges to the positive equilibrium point $\left(a_{1}+1-b_{0}\right) /\left(b_{1}+1\right)$ as $n \rightarrow \infty$.

More generally, suppose that $a_{0}=0$ and $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}>0$. Assume that $a_{i} \geqslant b_{i}$ for each $j \in\{1,2, \ldots, m\}$ with at least one case of equality. Then $M=1$. Our theorem implies that if $a_{0} / M+A-M B=A-B<b_{0}<A$, then the difference equation

$$
x_{n}=\frac{\sum_{i=1}^{m} a_{i} x_{n-i}}{b_{0}+\sum_{i=1}^{m} b_{i} x_{n-i}},
$$

$n=m, m+1, m+2, \ldots$, where $x_{0}, \ldots, x_{m-1}>0$, has a positive solution x_{n} which tends to the positive equilibrium point $\left(A-b_{0}\right) / B$ as $n \rightarrow \infty$.

Is the sufficient condition $a_{0} / M+A-M B<b_{0} \leqslant A$ of the theorem sharp for its conclusion $\lim _{n \rightarrow \infty} x_{n}=\left(A-b_{0}+\sqrt{\left(A-b_{0}\right)^{2}+4 a_{0} B}\right) / 2 B$? Clearly, inequality $b_{0} \leqslant A$ is sharp. Indeed, b_{0} cannot be greater than A for $a_{0}=0$, because the limit $\left(A-b_{0}\right) / B$ cannot be negative. A simple example $x_{n}=$ $x_{n-1} /\left(x_{n-1}+1+\varepsilon\right)$, where $\varepsilon>0, A=B=1, b_{0}=1+\varepsilon$, shows that for its every positive solution x_{n} we have $\lim _{n \rightarrow \infty} x_{n}=0$ (and not $\left(A-b_{0}\right) / B=-\varepsilon$).

To test the lower bound $b_{0}>a_{0} / M+A-M B$, let us consider the second order difference equation

$$
\begin{equation*}
x_{n}=\frac{\varepsilon x_{n-1}+x_{n-2}}{b_{0}+x_{n-1}} \tag{17}
\end{equation*}
$$

with some fixed positive ε. Then $a_{0}=0, A=1+\varepsilon, B=1, M=\varepsilon$. Hence $a_{0} / M+A-M B=1$. By the theorem, every positive solution x_{n} of this equation tends to $1+\varepsilon-b_{0}$ provided that $1<b_{0}<1+\varepsilon$. We remark that, in this particular case, the same conclusion follows under weaker assumption $1-\varepsilon<b_{0}<1+\varepsilon$ (see Equation \#83 on p. 245 in [2]). However, if $b_{0}<1-\varepsilon$, then the positive solution $\left(x_{n}\right)_{n=0}^{\infty}$ of (17) can be even unbounded for some choice of initial values $x_{0}, x_{1}>0$. According to [2] (see p. 246), the determination of those initial values $x_{0}, x_{1}>0$, for which the solution $\left(x_{n}\right)_{n=0}^{\infty}$ of (17) is unbounded, is still an open problem.

References

[1] E. Camouzis, Global analysis of solutions of $x_{n+1}=\frac{\beta x_{n}+\delta x_{n-2}}{A+B x_{n}+C x_{n-1}}$, J. Math. Anal. Appl. 316 (2006), no. 2, 616-627.
[2] E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Advances in Discrete Mathematics and Applications, 5. Chapman \& Hall/CRC, Boca Raton, FL, 2008.
[3] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, With open problems and conjectures. Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[4] J. Park, A global behavior of the positive solutions of $x_{n+1}=\frac{\beta x_{n}+x_{n-2}}{A+B x_{n}+x_{n-2}}$, Commun. Korean Math. Soc. 23 (2008), no. 1, 61-65.

Department of Mathematics and Informatics
Vilnius University
Naugarduko 24, Vilnius LT-03225, Lithuania
E-mail address: arturas.dubickas@mif.vu.lt

