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RATIONAL DIFFERENCE EQUATIONS WITH
POSITIVE EQUILIBRIUM POINT

Artūras Dubickas

Abstract. In this note we study positive solutions of the mth order ra-
tional difference equation xn = (a0 +

Pm
i=1 aixn−i)/(b0 +

Pm
i=1 bixn−i),

where n = m, m+1, m+2, . . . and x0, . . . , xm−1 > 0. We describe a suffi-
cient condition on nonnegative real numbers a0, a1, . . . , am, b0, b1, . . . , bm

under which every solution xn of the above equation tends to the limit

(A − b0 +
p

(A− b0)2 + 4a0B)/2B as n → ∞, where A =
Pm

i=1 ai and
B =

Pm
i=1 bi.

1. Introduction

Consider a sequence of positive numbers x0, x1, x2, . . . defined by the differ-
ence equation

(1) xn =
a0 +

∑m
i=1 aixn−i

b0 +
∑m

i=1 bixn−i

for n = m, m + 1, m + 2, . . ., where m is a positive integer, a0, a1, . . . , am,
b0, b1, . . . , bm > 0 and x0, . . . , xm−1 > 0. Suppose aibi > 0 for at least one
i ∈ {1, . . . , m}. Set

(2) M = min
16i6m, aibi 6=0

ai

bi
.

We shall prove the following:

Theorem. Suppose that a0, a1, . . . , am, b0, b1, . . . , bm > 0, where aibi > 0 for
at least one i ∈ {1, . . . , m}, and no index j ∈ {1, . . . ,m} exists for which aj = 0
but bj 6= 0. Let x0, x1, x2, . . . be a sequence of positive numbers defined by (1).
If a0/M + A − MB < b0 6 A, where A =

∑m
i=1 ai, B =

∑m
i=1 bi and M is

defined by (2), then

lim
n→∞

xn = (A− b0 +
√

(A− b0)2 + 4a0B)/2B

for any choice of initial values x0, . . . , xm−1.
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Several partial cases of the equation (1) have been studied on many occa-
sions. One can find numerous references in the monographs [3] and [2] devoted
to the cases m = 2 and m = 3 of (1), respectively. Generally speaking, the
positive solution xn of (1) or, more precisely, the sequence (xn)∞n=0 can be
bounded or unbounded, periodic or not periodic, stable or not stable, etc. In
particular, the authors of [3] distinguished 49 special cases of the equation (1)
with m = 2. Later, 225 different types of (1) with m = 3 have been examined
in [2].

One should say that the equation (1) often arises not only in pure and ap-
plied mathematics but also in various mathematical models of biological sys-
tems. Sometimes this is an additional motivation for its study. One of the
most natural questions is to determine whether the sequence (xn)∞n=1, which
is a positive solution of (1), has a single finite limit point or not. The dif-
ference equation (1) is called globally stable if, for any choice of initial values
x0, . . . , xm−1 > 0, the solution xn of (1) tends to a finite limit x, which is called
the equilibrium point. In this terminology, our theorem gives a sufficient con-
dition on a0, a1, . . . , am, b0, b1, . . . , bm under which the equation (1) is globally
stable.

Some sufficient conditions on the coefficients ai, bi under which (1) is globally
stable have been considered in [1] and [4]. More precisely, Camouzis [1] studied
the case m = 3, a0 = a2 = b3 = 0, a1, a3, b0, b1, b2 > 0. Park [4] investigated the
case m = 3, a0 = a2 = b2 = 0, a3 = b3 = 1, a1, b0, b1 > 0. In the last section,
we will show that the main theorem of [4] also follows from our theorem (In
fact, the same conclusion follows under even weaker assumptions).

We remark that, by our theorem, every solution xn tends to a positive
equilibrium point if either b0 < A or a0 > 0. Indeed, since 0 6 b0 6 A, a0 > 0,
A,B > 0, we have (A− b0 +

√
(A− b0)2 + 4a0B)/2B = 0 if and only if b0 = A

and a0 = 0.

2. Proof of Theorem

Put

(3) I = {i : 1 6 i 6 m, ai = Mbi}
and

(4) J = {1, . . . , m} \ I.

Note that

(5) ai > Mbi for each i = 1, . . . , m,

so

(6)
m∑

i=1

ai = A > MB = M

m∑

i=1

bi.
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Let (xn)∞n=1 be a sequence of positive numbers satisfying (1). We claim that
if

(7) b0 > a0/M + A−MB,

where M > 0 is given in (2), then

(8) xn 6 M

for every sufficiently large n.
For the sake of contradiction, assume that xn > M for infinitely many

positive integers n. Take one of those n’s satisfying n > n0, where n0 is an
integer to be chosen later. Then, by (1), we have

M < xn =
a0 +

∑m
i=1 aixn−i

b0 +
∑m

i=1 bixn−i
.

Multiplying by the denominator b0 +
∑m

i=1 bixn−i and using (3), we find that

(9) Mb0 − a0 <

m∑

i=1

(ai −Mbi)xn−i =
∑

16i6m, i/∈I
(ai −Mbi)xn−i.

This cannot happen if I = {1, . . . , m}, because then the right hand side of (9)
is zero, whereas (6) and (7) imply that Mb0 − a0 > 0.

So assume that the set J given in (4) is not empty. Estimating each xn−i,
where i ∈ J , by the maximum of those xn−i, say, xn−i1 = maxi∈J xn−i, from
(9) we deduce that

(10) Mb0 − a0 < xn−i1

∑

i∈J
(ai −Mbi).

From (3) and (4) it follows that
∑

i∈J (ai −Mbi) = A −MB > 0. Therefore,
the quotient q = b0/(A − MB) is greater than 1, by (7). Dividing (10) by
A−MB, we find that

xn−i1 > (Mb0 − a0)/(A−MB) = Mq − t

with t = a0/(A−MB) > 0. On applying the same argument to xn−i1 > Mq−t
(instead of xn > M as above), we derive that there is an index i2 ∈ J such
that xn−i1−i2 > (Mq− t)q− t and so on. The process stops after, say, k steps,
when we have

xn−i1−···−ik
> Mqk − t(qk−1 + · · ·+ 1) = t/(q − 1) + (M − t/(q − 1))qk

> (M − t/(q − 1))qk

and 0 6 n − i1 − · · · − ik 6 m − 1. Putting µ = max(x0, . . . , xm−1) we thus
obtain

(11) (M − t/(q − 1))qk < µ.

Note that M − t/(q − 1) > 0, because, by the definition of q and t, this is
equivalent to the inequality (7).
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On the other hand,

n0 6 n 6 i1 + · · ·+ ik + m− 1 6 mk + m− 1 < m(k + 1),

because each index il, 1 6 l 6 m, is at most m. Hence k > n0/m− 1. Select n0

so large that (M − t/(q − 1))qn0/m−1 > µ. Then, by (11), k must be smaller
than n0/m− 1, which is a contradiction with k > n0/m− 1. This proves (8).

Next, we will prove that if either b0 < A or a0 > 0, then there is a positive
number u such that

(12) xn > u

for each n > 0. Suppose first that b0 < A. Set τ = min(x0, . . . , xm−1) and
% = 1− b0/A > 0. We will prove that then

(13) xn > u = min(τ, %M)

for each n > 0.
To prove (13) assume that n is the least index for which xn < u=min(τ, %M).

Clearly, n > m. Then, by (1) and (5), we obtain

a0 +
m∑

i=1

aixn−i = xnb0 + xn

m∑

i=1

bixn−i

< ub0 + %M

m∑

i=1

bixn−i

6 ub0 + %

m∑

i=1

aixn−i.

Hence

ub0 > a0 +(1−%)
m∑

i=1

aixn−i > (1−%)
m∑

i=1

aixn−i > (1−%)
m∑

i=1

aiu = (1−%)Au,

because a0 > 0 and xn−i > u. This yields b0 > (1− %)A = b0, a contradiction.
The proof of (13) is completed.

We now turn to the case a0 > 0. This time, select u = min(τ,M, a0/(b0+1)).
Then a0 > ub0 and ai > ubi for each i = 1, . . . ,m, by (5). Assume that xn < u
for some n > 0. Then n > m. So (1) implies that

a0 +
m∑

i=1

aixn−i = xnb0 +xn

m∑

i=1

bixn−i < ub0 +
m∑

i=1

ubixn−i 6 ub0 +
m∑

i=1

aixn−i,

giving a0 < ub0, a contradiction. This completes the proof of (12).
Combining (8) and (12), we deduce that xn ∈ [u,M ] for each n > n0. Here,

u > 0 if b0 < A or a0 > 0. Alternatively, if b0 = A and a0 = 0, we can trivially
take u = 0, because all xn are positive. Put

S = lim sup
n→∞

xn, I = lim inf
n→∞

xn.

Then 0 6 u 6 I 6 S 6 M, where u = 0 if and only if b0 = A and a0 = 0.
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Let

z1 = (A−b0−
√

(A− b0)2 + 4a0B)/2B, z2 = (A−b0+
√

(A− b0)2 + 4a0B)/2B

be the solutions of the equation

(14) Bz2 − (A− b0)z − a0 = B(z − z1)(z − z2) = 0.

We shall prove that S 6 z2 and I > z2. This yields S = I = z2, and so the
proof of the theorem will be completed.

By the above, the sequence of vectors (xn, xn−1, . . . , xn−m), n = n0+m, n0+
m+1, . . . , belongs the (m+1)-dimensional cube [u,M ]m+1. So, by compactness,
there is a sequence of positive integers nk, k = 1, 2, 3, . . . , such that the vector
(xnk

, xnk−1, . . . , xnk−m) tends to the vector (S, S1, . . . , Sm) as k → ∞, where
S1, . . . , Sm 6 S and u 6 S1, . . . , Sm, S 6 M. From (1) it follows that S(b0 +∑m

i=1 biSi) = a0 +
∑m

i=1 aiSi. Hence

(15) Sb0 − a0 + (Sb1 − a1)S1 + · · ·+ (Sbm − am)Sm = 0.

By (5) and S 6 M, we obtain Sbi − ai 6 0 for each i = 1, . . . ,m. Hence
(Sbi − ai)Si > (Sbi − ai)S for i = 1, . . . , m. Therefore, on replacing each Si by
S in (15) we will not increase the sum on the left hand side of (15). Hence

BS2 − (A− b0)S − a0 = Sb0 − a0 +
m∑

i=1

(Sbi − ai)S 6 0.

So S ∈ [z1, z2], by (14), giving S 6 z2.
We now consider two cases, u = 0 and u > 0. In the first case, u = 0, we

have z2 = 0, because b0 = A and a0 = 0. In this case also I = 0, because I > 0.
So S = I = 0, which completes the proof of the theorem.

In the second case, u > 0, we have z1 6 0 < z2 and S 6 z2. It re-
mains to prove that I > z2. The argument is similar to that given above.
By compactness, there is a sequence of positive integers `k, k = 1, 2, 3, . . . ,
such that the vector (x`k

, x`k−1, . . . , x`k−m) tends to the vector (I, I1, . . . , Im)
as k → ∞, where I1, . . . , Im > I > u > 0. Now, from (1) it follows that
I(b0 +

∑m
i=1 biIi) = a0 +

∑m
i=1 aiIi. Hence

(16) Ib0 − a0 + (Ib1 − a1)I1 + · · ·+ (Ibm − am)Im = 0.

By (5) and I 6 S 6 M, we have Ibi − ai 6 0 for each i = 1, . . . , m. Hence
(Ibi − ai)Ii 6 (Ibi − ai)I for i = 1, . . . ,m. This time, on replacing in (16) each
Ii by I we will not decrease the sum on the left hand side of (16), so that

B(I − z1)(I − z2) = BI2 − (A− b0)I − a0 = Ib0 − a0 +
m∑

i=1

(Ibi − ai)I > 0.

Since I > 0, we must have I > z2 for otherwise (I − z1)(I − z2) < 0. This
proves our assertion I = S = z2.
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3. Examples

As the first example we shall consider the case m = 3, a0 = a2 = b2 = 0,
a3 = b3 = 1, a1, b0, b1 > 0. It was proved in [4] that then limn→∞ xn = x =
(a1 + 1 − b0)/(b1 + 1) provided that 0 < a1 6 b1 and 1 < b0 < a1 + 1. We
shall prove that the same holds under weaker conditions 0 < a1 6 b1 and
1− a1/b1 < b0 < a1 + 1.

Indeed, with the notation of our theorem, we have

A = a1 + a2 + a3 = a1 + 1,

B = b1 + b2 + b3 = b1 + 1,

z2 = (A− b0 +
√

(A− b0)2 + 4a0B)/2B

= (A− b0)/B = x = (a1 + 1− b0)/(b1 + 1).

By (2), M = min(a1/b1, 1) = a1/b1, because a1 6 b1. The condition of the
theorem saying that no index j ∈ {1, . . . , m} exists for which aj = 0 but
bj 6= 0 is satisfied, because a2 = b2 = 0 and a1b1, a3b3 > 0. Since a0 = 0 and
A−MB = 1− a1/b1, the condition

a0/M + A−MB < b0 6 A

of the theorem is equivalent to 1 − a1/b1 < b0 6 a1 + 1. Evidently, the equi-
librium point z2 = x = (a1 + 1 − b0)/(b1 + 1) is positive if b0 < a1 + 1. We
conclude that if 0 < a1 6 b1 and 1− a1/b1 < b0 < a1 + 1, then the third order
rational difference equation

xn =
a1xn−1 + xn−3

b0 + b1xn−1 + xn−3
,

n = 3, 4, . . . , where x0, x1, x2 > 0, has a positive solution xn which converges
to the positive equilibrium point (a1 + 1− b0)/(b1 + 1) as n →∞.

More generally, suppose that a0 = 0 and a1, . . . , am, b1, . . . , bm > 0. Assume
that ai > bi for each j ∈ {1, 2, . . . ,m} with at least one case of equality. Then
M = 1. Our theorem implies that if a0/M + A−MB = A−B < b0 < A, then
the difference equation

xn =
∑m

i=1 aixn−i

b0 +
∑m

i=1 bixn−i
,

n = m,m + 1,m + 2, . . . , where x0, . . . , xm−1 > 0, has a positive solution xn

which tends to the positive equilibrium point (A− b0)/B as n →∞.
Is the sufficient condition a0/M + A−MB < b0 6 A of the theorem sharp

for its conclusion limn→∞ xn = (A − b0 +
√

(A− b0)2 + 4a0B)/2B? Clearly,
inequality b0 6 A is sharp. Indeed, b0 cannot be greater than A for a0 = 0,
because the limit (A − b0)/B cannot be negative. A simple example xn =
xn−1/(xn−1 + 1 + ε), where ε > 0, A = B = 1, b0 = 1 + ε, shows that for its
every positive solution xn we have limn→∞ xn = 0 (and not (A− b0)/B = −ε).
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To test the lower bound b0 > a0/M + A −MB, let us consider the second
order difference equation

(17) xn =
εxn−1 + xn−2

b0 + xn−1

with some fixed positive ε. Then a0 = 0, A = 1 + ε, B = 1, M = ε. Hence
a0/M + A − MB = 1. By the theorem, every positive solution xn of this
equation tends to 1 + ε − b0 provided that 1 < b0 < 1 + ε. We remark that,
in this particular case, the same conclusion follows under weaker assumption
1−ε < b0 < 1+ε (see Equation #83 on p. 245 in [2]). However, if b0 < 1−ε, then
the positive solution (xn)∞n=0 of (17) can be even unbounded for some choice
of initial values x0, x1 > 0. According to [2] (see p. 246), the determination
of those initial values x0, x1 > 0, for which the solution (xn)∞n=0 of (17) is
unbounded, is still an open problem.
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