A PROPERTY OF COFUNCTORS SF(X,A)

  • Published : 1973.12.20

Abstract

A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

Keywords